These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32446088)
1. Adsorption of low-concentration VOCs on various adsorbents: Correlating partition coefficient with surface energy of adsorbent. Liu H; Xu B; Wei K; Yu Y; Long C Sci Total Environ; 2020 Sep; 733():139376. PubMed ID: 32446088 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insights into and modeling the effects of relative humidity on low-concentration VOCs adsorption on hyper-cross-linked polymeric resin by inverse gas chromatography. Liu H; Wang L; Zhang J; Liang X; Long C J Hazard Mater; 2021 Sep; 418():126335. PubMed ID: 34329011 [TBL] [Abstract][Full Text] [Related]
3. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography. Jia L; Ma J; Shi Q; Long C Environ Sci Technol; 2017 Jan; 51(1):522-530. PubMed ID: 27936649 [TBL] [Abstract][Full Text] [Related]
4. Predicting adsorption coefficients of VOCs using polyparameter linear free energy relationship based on the evaluation of dispersive and specific interactions. Liu H; Wei K; Yu Y; Long C Environ Pollut; 2019 Dec; 255(Pt 1):113224. PubMed ID: 31541807 [TBL] [Abstract][Full Text] [Related]
5. [Evaluation of thermal adsorption and desorption properties of dioxins on 11 adsorbents]. Wang L; Wang L; Ni Y; Zhang H; Chen J Se Pu; 2021 Apr; 39(4):437-443. PubMed ID: 34227765 [TBL] [Abstract][Full Text] [Related]
6. Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities: comparison with organoclays and activated carbon. Li MS; Wang R; Fu Kuo DT; Shih YH Environ Sci Process Impacts; 2017 Mar; 19(3):276-287. PubMed ID: 28165513 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of VOCs onto engineered carbon materials: A review. Zhang X; Gao B; Creamer AE; Cao C; Li Y J Hazard Mater; 2017 Sep; 338():102-123. PubMed ID: 28535479 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations. Yao M; Zhang Q; Hand DW; Perram DL; Taylor R J Air Waste Manag Assoc; 2009 Jul; 59(7):882-90. PubMed ID: 19645272 [TBL] [Abstract][Full Text] [Related]
9. Insights into the role of VOCs properties on thermal desorption behaviors of two porous polymeric resins. Liu H; Yu Y; Long C Environ Pollut; 2024 May; 348():123879. PubMed ID: 38548161 [TBL] [Abstract][Full Text] [Related]
10. Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. Wang S; Zhang L; Long C; Li A J Colloid Interface Sci; 2014 Aug; 428():185-90. PubMed ID: 24910052 [TBL] [Abstract][Full Text] [Related]
11. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach. Tian S; Zhu L; Shi Y Environ Sci Technol; 2004 Jan; 38(2):489-95. PubMed ID: 14750724 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the adsorption capacity for volatile organic compounds onto activated carbons by the Dubinin-Radushkevich-Langmuir model. Hung HW; Lin TF J Air Waste Manag Assoc; 2007 Apr; 57(4):497-506. PubMed ID: 17458469 [TBL] [Abstract][Full Text] [Related]
13. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape. Yang K; Sun Q; Xue F; Lin D J Hazard Mater; 2011 Nov; 195():124-31. PubMed ID: 21871718 [TBL] [Abstract][Full Text] [Related]
14. Functionalization of porous siliceous materials, Part 2: Surface characterization by inverse gas chromatography. Bauer F; Meyer R; Czihal S; Bertmer M; Decker U; Naumov S; Uhlig H; Steinhart M; Enke D J Chromatogr A; 2019 Oct; 1603():297-310. PubMed ID: 31227363 [TBL] [Abstract][Full Text] [Related]
15. Characterization of volatile organic compound adsorption on multiwall carbon nanotubes under different levels of relative humidity using linear solvation energy relationship. Li MS; Wu SC; Shih YH J Hazard Mater; 2016 Sep; 315():35-41. PubMed ID: 27152974 [TBL] [Abstract][Full Text] [Related]
16. New device for time-averaged measurement of volatile organic compounds (VOCs). Santiago Sánchez N; Tejada Alarcón S; Tortajada Santonja R; Llorca-Pórcel J Sci Total Environ; 2014 Jul; 485-486():720-725. PubMed ID: 24388502 [TBL] [Abstract][Full Text] [Related]
17. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Zou W; Gao B; Ok YS; Dong L Chemosphere; 2019 Mar; 218():845-859. PubMed ID: 30508803 [TBL] [Abstract][Full Text] [Related]
18. Effect of microstructure in mesoporous adsorbents on the adsorption of low concentrations of VOCs: An experimental and simulation study. Liu Y; Peyravi A; Dong X; Hashisho Z; Zheng S; Chen X; Gao D; Hao Y; Tong Y; Wang J J Hazard Mater; 2023 Sep; 458():131934. PubMed ID: 37390690 [TBL] [Abstract][Full Text] [Related]
19. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH). Qu F; Zhu L; Yang K J Hazard Mater; 2009 Oct; 170(1):7-12. PubMed ID: 19505753 [TBL] [Abstract][Full Text] [Related]