These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 32446178)

  • 41. A Correlation-Based Framework for Evaluating Postural Control Stochastic Dynamics.
    Hernandez ME; Snider J; Stevenson C; Cauwenberghs G; Poizner H
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):551-561. PubMed ID: 26011886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Large postural fluctuations but unchanged postural sway dynamics during tiptoe standing compared to quiet standing.
    Tanabe H; Fujii K; Kouzaki M
    J Electromyogr Kinesiol; 2012 Dec; 22(6):975-82. PubMed ID: 22735440
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effects of uni- and bilateral fatigue on postural and power tasks.
    Marchetti PH; Orselli MI; Duarte M
    J Appl Biomech; 2013 Feb; 29(1):44-8. PubMed ID: 22814245
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.
    Donath L; Kurz E; Roth R; Zahner L; Faude O
    Maturitas; 2016 Sep; 91():60-8. PubMed ID: 27451322
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of aging on the association between ankle muscle strength and the control of bipedal stance.
    Svoboda Z; Bizovska L; Gonosova Z; Linduska P; Kovacikova Z; Vuillerme N
    PLoS One; 2019; 14(10):e0223434. PubMed ID: 31581217
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Age-related differences in the capacity and neuromuscular control of the foot core system during quiet standing.
    Lai J; Ye Y; Huang D; Zhang X
    Scand J Med Sci Sports; 2024 Jan; 34(1):e14522. PubMed ID: 37872662
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults.
    Watanabe T; Saito K; Ishida K; Tanabe S; Nojima I
    Exp Brain Res; 2018 May; 236(5):1229-1239. PubMed ID: 29479634
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intrinsic foot muscle hardness is related to dynamic postural stability after landing in healthy young men.
    Maeda N; Hirota A; Komiya M; Morikawa M; Mizuta R; Fujishita H; Nishikawa Y; Kobayashi T; Urabe Y
    Gait Posture; 2021 May; 86():192-198. PubMed ID: 33756408
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuromechanical characterization of the abductor hallucis and its potential role in upright postural control.
    Sharma T; Copeland PV; Debenham MIB; Bent LR; Dalton BH
    Appl Physiol Nutr Metab; 2024 Mar; 49(3):293-305. PubMed ID: 37913527
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The duration and plantar pressure distribution during one-leg stance in Tai Chi exercise.
    Mao DW; Li JX; Hong Y
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):640-5. PubMed ID: 16527382
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The influence of ankle muscle activation on postural sway during quiet stance.
    Warnica MJ; Weaver TB; Prentice SD; Laing AC
    Gait Posture; 2014 Apr; 39(4):1115-21. PubMed ID: 24613374
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ankle muscles activation and postural stability with Star Excursion Balance Test in healthy individuals.
    Karagiannakis DN; Iatridou KI; Mandalidis DG
    Hum Mov Sci; 2020 Feb; 69():102563. PubMed ID: 31989955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Postural responses triggered by multidirectional leg lifts and surface tilts.
    Hughey LK; Fung J
    Exp Brain Res; 2005 Aug; 165(2):152-66. PubMed ID: 15940494
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feet distance and static postural balance: implication on the role of natural stance.
    Kim JW; Kwon Y; Jeon HM; Bang MJ; Jun JH; Eom GM; Lim DH
    Biomed Mater Eng; 2014; 24(6):2681-8. PubMed ID: 25226972
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Muscle synergies involved in shifting the center of pressure while making a first step.
    Wang Y; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2005 Nov; 167(2):196-210. PubMed ID: 16034579
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation.
    Claret CR; Herget GW; Kouba L; Wiest D; Adler J; von Tscharner V; Stieglitz T; Pasluosta C
    J Neuroeng Rehabil; 2019 Sep; 16(1):115. PubMed ID: 31521190
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Postural Stability and Muscle Activation Onset during Double- to Single-Leg Stance Transition in Flat-Footed Individuals.
    Koshino Y; Samukawa M; Chida S; Okada S; Tanaka H; Watanabe K; Chijimatsu M; Yamanaka M; Tohyama H
    J Sports Sci Med; 2020 Dec; 19(4):662-669. PubMed ID: 33239939
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Voluntary control of forward leaning posture relates to low-frequency neural inputs to the medial gastrocnemius muscle.
    Watanabe T; Nojima I; Sugiura H; Yacoubi B; Christou EA
    Gait Posture; 2019 Feb; 68():187-192. PubMed ID: 30497039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of visual information on multi-muscle control during quiet stance: a spectral analysis approach.
    Danna-Dos-Santos A; Degani AM; Boonstra TW; Mochizuki L; Harney AM; Schmeckpeper MM; Tabor LC; Leonard CT
    Exp Brain Res; 2015 Feb; 233(2):657-69. PubMed ID: 25407521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Is the stabilization of quiet upright stance in humans driven by synchronized modulations of the activity of medial and lateral gastrocnemius muscles?
    Vieira TM; Windhorst U; Merletti R
    J Appl Physiol (1985); 2010 Jan; 108(1):85-97. PubMed ID: 19910338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.