These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32446243)

  • 1. Predicting novel CircRNA-disease associations based on random walk and logistic regression model.
    Ding Y; Chen B; Lei X; Liao B; Wu FX
    Comput Biol Chem; 2020 May; 87():107287. PubMed ID: 32446243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DWNN-RLS: regularized least squares method for predicting circRNA-disease associations.
    Yan C; Wang J; Wu FX
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):520. PubMed ID: 30598076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations.
    Lei X; Fang Z; Chen L; Wu FX
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30384427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network.
    Cao R; He C; Wei P; Su Y; Xia J; Zheng C
    Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating random walk with restart and k-Nearest Neighbor to identify novel circRNA-disease association.
    Lei X; Bian C
    Sci Rep; 2020 Feb; 10(1):1943. PubMed ID: 32029856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prioritizing CircRNA-Disease Associations With Convolutional Neural Network Based on Multiple Similarity Feature Fusion.
    Fan C; Lei X; Pan Y
    Front Genet; 2020; 11():540751. PubMed ID: 33193615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of CircRNA-Disease Associations Using KATZ Model Based on Heterogeneous Networks.
    Fan C; Lei X; Wu FX
    Int J Biol Sci; 2018; 14(14):1950-1959. PubMed ID: 30585259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting human disease-associated circRNAs based on locality-constrained linear coding.
    Ge E; Yang Y; Gang M; Fan C; Zhao Q
    Genomics; 2020 Mar; 112(2):1335-1342. PubMed ID: 31394170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GGAECDA: Predicting circRNA-disease associations using graph autoencoder based on graph representation learning.
    Li G; Lin Y; Luo J; Xiao Q; Liang C
    Comput Biol Chem; 2022 Aug; 99():107722. PubMed ID: 35810557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting circRNA-Disease Associations Based on Improved Collaboration Filtering Recommendation System With Multiple Data.
    Lei X; Fang Z; Guo L
    Front Genet; 2019; 10():897. PubMed ID: 31608124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GBDTCDA: Predicting circRNA-disease Associations Based on Gradient Boosting Decision Tree with Multiple Biological Data Fusion.
    Lei X; Fang Z
    Int J Biol Sci; 2019; 15(13):2911-2924. PubMed ID: 31853227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double matrix completion for circRNA-disease association prediction.
    Zuo ZL; Cao RF; Wei PJ; Xia JF; Zheng CH
    BMC Bioinformatics; 2021 Jun; 22(1):307. PubMed ID: 34103016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel target convergence set based random walk with restart for prediction of potential LncRNA-disease associations.
    Li J; Li X; Feng X; Wang B; Zhao B; Wang L
    BMC Bioinformatics; 2019 Dec; 20(1):626. PubMed ID: 31795943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GATCDA: Predicting circRNA-Disease Associations Based on Graph Attention Network.
    Bian C; Lei XJ; Wu FX
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34070678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network.
    Ma Z; Kuang Z; Deng L
    BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MNCLCDA: predicting circRNA-drug sensitivity associations by using mixed neighbourhood information and contrastive learning.
    Li G; Zeng F; Luo J; Liang C; Xiao Q
    BMC Med Inform Decis Mak; 2023 Dec; 23(1):291. PubMed ID: 38110886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining K Nearest Neighbor With Nonnegative Matrix Factorization for Predicting Circrna-Disease Associations.
    Wang MN; Xie XJ; You ZH; Wong L; Li LP; Chen ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):2610-2618. PubMed ID: 35675235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prioritizing potential circRNA biomarkers for bladder cancer and bladder urothelial cancer based on an ensemble model.
    Su Q; Tan Q; Liu X; Wu L
    Front Genet; 2022; 13():1001608. PubMed ID: 36186429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting circRNA-Disease Associations Based on circRNA Expression Similarity and Functional Similarity.
    Wang Y; Nie C; Zang T; Wang Y
    Front Genet; 2019; 10():832. PubMed ID: 31572444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential circRNA-disease association prediction using DeepWalk and network consistency projection.
    Li G; Luo J; Wang D; Liang C; Xiao Q; Ding P; Chen H
    J Biomed Inform; 2020 Dec; 112():103624. PubMed ID: 33217543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.