These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32446757)

  • 1. Assistive locomotion device with haptic feedback for guiding visually impaired people.
    Jiménez MF; Mello RC; Bastos T; Frizera A
    Med Eng Phys; 2020 Jun; 80():18-25. PubMed ID: 32446757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligent control of a smart walker and its performance evaluation.
    Grondin SL; Li Q
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650346. PubMed ID: 24187165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists.
    Garcia A DE; Sierra M SD; Gomez-Vargas D; Jiménez MF; Múnera M; Cifuentes CA
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Haptic and Bang-Bang Braking Actions for Passive Robotic Walker Path Following.
    Andreetto M; Divan S; Ferrari F; Fontanelli D; Palopoli L; Prattichizzo D
    IEEE Trans Haptics; 2019; 12(4):542-553. PubMed ID: 31034420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A New Controller for a Smart Walker Based on Human-Robot Formation.
    Valadão C; Caldeira E; Bastos-Filho T; Frizera-Neto A; Carelli R
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Smart Walker for People with Both Visual and Mobility Impairment.
    Mostofa N; Feltner C; Fullin K; Guilbe J; Zehtabian S; Bacanlı SS; Bölöni L; Turgut D
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34067717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. User-Oriented Evaluation of a Robotic Rollator That Provides Navigation Assistance in Frail Older Adults with and without Cognitive Impairment.
    Werner C; Moustris GP; Tzafestas CS; Hauer K
    Gerontology; 2018; 64(3):278-290. PubMed ID: 29183035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibrotactile Guidance for Wayfinding of Blind Walkers.
    Flores G; Kurniawan S; Manduchi R; Martinson E; Morales LM; Sisbot EA
    IEEE Trans Haptics; 2015; 8(3):306-17. PubMed ID: 25781953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Range sensor-based assistive technology solutions for people with visual impairment: a review.
    Manzoor S; Iftikhar S; Ayub I; Shahid A; Haq AU; Muhammad W; Shafique M
    Disabil Rehabil Assist Technol; 2024 Apr; 19(3):576-584. PubMed ID: 36036390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Development of a Wearable Assistive Device Integrating a Fuzzy Decision Support System for Blind and Visually Impaired People.
    Bouteraa Y
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smart and Assistive Walker - ASBGo: Rehabilitation Robotics: A Smart-Walker to Assist Ataxic Patients.
    Moreira R; Alves J; Matias A; Santos C
    Adv Exp Med Biol; 2019; 1170():37-68. PubMed ID: 32067202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness.
    Sierra M SD; Múnera M; Provot T; Bourgain M; Cifuentes CA
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reimagining robotic walkers for real-world outdoor play environments with insights from legged robots: a scoping review.
    Stewart-Height A; Koditschek DE; Johnson MJ
    Disabil Rehabil Assist Technol; 2023 Aug; 18(6):798-818. PubMed ID: 34087079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ROS-Based Smart Walker with Fuzzy Posture Judgement and Power Assistance.
    Chang YH; Sahoo N; Chen JY; Chuang SY; Lin HW
    Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33805520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LidSonic V2.0: A LiDAR and Deep-Learning-Based Green Assistive Edge Device to Enhance Mobility for the Visually Impaired.
    Busaeed S; Katib I; Albeshri A; Corchado JM; Yigitcanlar T; Mehmood R
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Social Implementation Education for Assistive Device Engineers at NIT (KOSEN) through the Development of a Digital Reading Device for the Visually Impaired.
    Kiyota K; Ishibashi T; Shimakawa M; Ito K
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of horizontal forces from a Smart Walker on gait and perceived exertion.
    Yeoh WL; Choi J; Loh PY; Saito S; Muraki S
    Assist Technol; 2022 Mar; 34(2):204-212. PubMed ID: 32216620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical evaluation of Guido robotic walker.
    Rentschler AJ; Simpson R; Cooper RA; Boninger ML
    J Rehabil Res Dev; 2008; 45(9):1281-93. PubMed ID: 19319753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and implementation of visual-haptic assistive control system for virtual rehabilitation exercise and teleoperation manipulation.
    Veras EJ; De Laurentis KJ; Dubey R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4290-3. PubMed ID: 19163661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.