These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32446854)

  • 1. Key Steps in the Evolution of Mammalian Movement: A Prolegomenal Essay.
    Brownstone RM
    Neuroscience; 2020 Dec; 450():135-141. PubMed ID: 32446854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Notch-regulated proliferative stem cell zone in the developing spinal cord is an ancestral vertebrate trait.
    Lara-Ramirez R; Pérez-González C; Anselmi C; Patthey C; Shimeld SM
    Development; 2019 Jan; 146(1):. PubMed ID: 30552127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Optogenetic Demonstration of Motor Modularity in the Mammalian Spinal Cord.
    Caggiano V; Cheung VC; Bizzi E
    Sci Rep; 2016 Oct; 6():35185. PubMed ID: 27734925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new conceptual framework for the integrated neural control of locomotor and sympathetic function: implications for exercise after spinal cord injury.
    Cowley KC
    Appl Physiol Nutr Metab; 2018 Nov; 43(11):1140-1150. PubMed ID: 30071179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central pattern generators of the mammalian spinal cord.
    Frigon A
    Neuroscientist; 2012 Feb; 18(1):56-69. PubMed ID: 21518815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Migration patterns of sympathetic preganglionic neurons in embryonic rat spinal cord.
    Markham JA; Vaughn JE
    J Neurobiol; 1991 Nov; 22(8):811-22. PubMed ID: 1779224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular organization of spinal motor systems.
    Bizzi E; D'Avella A; Saltiel P; Tresch M
    Neuroscientist; 2002 Oct; 8(5):437-42. PubMed ID: 12374428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of endothermy and its diversity in mammals and birds.
    Grigg GC; Beard LA; Augee ML
    Physiol Biochem Zool; 2004; 77(6):982-97. PubMed ID: 15674771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs.
    Chang SH; Su YC; Chang M; Chen JA
    Elife; 2021 Mar; 10():. PubMed ID: 33787491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance.
    Kavanau JL
    Neuroscience; 1997 Jul; 79(1):7-44. PubMed ID: 9178863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brainstem Circuits Controlling Action Diversification.
    Ruder L; Arber S
    Annu Rev Neurosci; 2019 Jul; 42():485-504. PubMed ID: 31283898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
    Shevtsova NA; Rybak IA
    J Physiol; 2016 Nov; 594(21):6117-6131. PubMed ID: 27292055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensory feedback synchronizes motor and sensory neuronal networks in the neonatal rat spinal cord.
    Inácio AR; Nasretdinov A; Lebedeva J; Khazipov R
    Nat Commun; 2016 Oct; 7():13060. PubMed ID: 27713428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brainstem control of orienting movements: intrinsic coordinate systems and underlying circuitry.
    Masino T
    Brain Behav Evol; 1992; 40(2-3):98-111. PubMed ID: 1422810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orderly compartmental mapping of premotor inhibition in the developing zebrafish spinal cord.
    Kishore S; Cadoff EB; Agha MA; McLean DL
    Science; 2020 Oct; 370(6515):431-436. PubMed ID: 33093104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reticulospinal Systems for Tuning Motor Commands.
    Brownstone RM; Chopek JW
    Front Neural Circuits; 2018; 12():30. PubMed ID: 29720934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination and localization in spinal motor systems.
    Tresch MC; Saltiel P; d'Avella A; Bizzi E
    Brain Res Brain Res Rev; 2002 Oct; 40(1-3):66-79. PubMed ID: 12589907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycine plays a crucial role as a co-agonist of NMDA receptors in the neuronal circuit generating body movements in rat fetuses.
    Shimomura H; Ito M; Nishiyama A; Tanizawa T; Takeshima Y; Nishimaru H; Arata A
    Neurosci Res; 2015 Aug; 97():13-9. PubMed ID: 25828272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.