BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 32446905)

  • 21. The use of natural language processing to identify vaccine-related anaphylaxis at five health care systems in the Vaccine Safety Datalink.
    Yu W; Zheng C; Xie F; Chen W; Mercado C; Sy LS; Qian L; Glenn S; Tseng HF; Lee G; Duffy J; McNeil MM; Daley MF; Crane B; McLean HQ; Jackson LA; Jacobsen SJ
    Pharmacoepidemiol Drug Saf; 2020 Feb; 29(2):182-188. PubMed ID: 31797475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automated Extraction of Pain Symptoms: A Natural Language Approach using Electronic Health Records.
    Dave AD; Ruano G; Kost J; Wang X
    Pain Physician; 2022 Mar; 25(2):E245-E254. PubMed ID: 35322976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Natural language processing for identification of refractory status epilepticus in children.
    Chafjiri FMA; Reece L; Voke L; Landschaft A; Clark J; Kimia AA; Loddenkemper T
    Epilepsia; 2023 Dec; 64(12):3227-3237. PubMed ID: 37804085
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
    Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S
    J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Developing and validating a natural language processing algorithm to extract preoperative cannabis use status documentation from unstructured narrative clinical notes.
    Sajdeya R; Mardini MT; Tighe PJ; Ison RL; Bai C; Jugl S; Hanzhi G; Zandbiglari K; Adiba FI; Winterstein AG; Pearson TA; Cook RL; Rouhizadeh M
    J Am Med Inform Assoc; 2023 Jul; 30(8):1418-1428. PubMed ID: 37178155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.
    Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC
    Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perspectives of basic wheelchair users on improving their access to wheelchair services in Kenya and Philippines: a qualitative study.
    Williams E; Hurwitz E; Obaga I; Onguti B; Rivera A; Sy TRL; Kirby RL; Noon J; Tanuku D; Gichangi A; Bazant E
    BMC Int Health Hum Rights; 2017 Aug; 17(1):22. PubMed ID: 28818075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Building a Natural Language Processing Tool to Identify Patients With High Clinical Suspicion for Kawasaki Disease from Emergency Department Notes.
    Doan S; Maehara CK; Chaparro JD; Lu S; Liu R; Graham A; Berry E; Hsu CN; Kanegaye JT; Lloyd DD; Ohno-Machado L; Burns JC; Tremoulet AH;
    Acad Emerg Med; 2016 May; 23(5):628-36. PubMed ID: 26826020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early recognition of multiple sclerosis using natural language processing of the electronic health record.
    Chase HS; Mitrani LR; Lu GG; Fulgieri DJ
    BMC Med Inform Decis Mak; 2017 Feb; 17(1):24. PubMed ID: 28241760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.