These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32446905)

  • 21. The prevalence of problem opioid use in patients receiving chronic opioid therapy: computer-assisted review of electronic health record clinical notes.
    Palmer RE; Carrell DS; Cronkite D; Saunders K; Gross DE; Masters E; Donevan S; Hylan TR; Von Kroff M
    Pain; 2015 Jul; 156(7):1208-1214. PubMed ID: 25760471
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Evaluation of a Natural Language Processing Annotation Tool to Facilitate Phenotyping of Cognitive Status in Electronic Health Records: Diagnostic Study.
    Noori A; Magdamo C; Liu X; Tyagi T; Li Z; Kondepudi A; Alabsi H; Rudmann E; Wilcox D; Brenner L; Robbins GK; Moura L; Zafar S; Benson NM; Hsu J; R Dickson J; Serrano-Pozo A; Hyman BT; Blacker D; Westover MB; Mukerji SS; Das S
    J Med Internet Res; 2022 Aug; 24(8):e40384. PubMed ID: 36040790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated Extraction of Pain Symptoms: A Natural Language Approach using Electronic Health Records.
    Dave AD; Ruano G; Kost J; Wang X
    Pain Physician; 2022 Mar; 25(2):E245-E254. PubMed ID: 35322976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural language processing for identification of refractory status epilepticus in children.
    Chafjiri FMA; Reece L; Voke L; Landschaft A; Clark J; Kimia AA; Loddenkemper T
    Epilepsia; 2023 Dec; 64(12):3227-3237. PubMed ID: 37804085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records.
    Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S
    J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study.
    Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK
    BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing and validating a natural language processing algorithm to extract preoperative cannabis use status documentation from unstructured narrative clinical notes.
    Sajdeya R; Mardini MT; Tighe PJ; Ison RL; Bai C; Jugl S; Hanzhi G; Zandbiglari K; Adiba FI; Winterstein AG; Pearson TA; Cook RL; Rouhizadeh M
    J Am Med Inform Assoc; 2023 Jul; 30(8):1418-1428. PubMed ID: 37178155
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Natural language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review.
    Sim JA; Huang X; Horan MR; Stewart CM; Robison LL; Hudson MM; Baker JN; Huang IC
    Artif Intell Med; 2023 Dec; 146():102701. PubMed ID: 38042599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perspectives of basic wheelchair users on improving their access to wheelchair services in Kenya and Philippines: a qualitative study.
    Williams E; Hurwitz E; Obaga I; Onguti B; Rivera A; Sy TRL; Kirby RL; Noon J; Tanuku D; Gichangi A; Bazant E
    BMC Int Health Hum Rights; 2017 Aug; 17(1):22. PubMed ID: 28818075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Getting More Out of Large Databases and EHRs with Natural Language Processing and Artificial Intelligence: The Future Is Here.
    Khosravi B; Rouzrokh P; Erickson BJ
    J Bone Joint Surg Am; 2022 Oct; 104(Suppl 3):51-55. PubMed ID: 36260045
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering and identifying New York heart association classification from electronic health records.
    Zhang R; Ma S; Shanahan L; Munroe J; Horn S; Speedie S
    BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):48. PubMed ID: 30066653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mixed-methods evaluation of three natural language processing modeling approaches for measuring documented goals-of-care discussions in the electronic health record.
    Uyeda AM; Curtis JR; Engelberg RA; Brumback LC; Guo Y; Sibley J; Lober WB; Cohen T; Torrence J; Heywood J; Paul SR; Kross EK; Lee RY
    J Pain Symptom Manage; 2022 Jun; 63(6):e713-e723. PubMed ID: 35182715
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Natural language processing of clinical notes for identification of critical limb ischemia.
    Afzal N; Mallipeddi VP; Sohn S; Liu H; Chaudhry R; Scott CG; Kullo IJ; Arruda-Olson AM
    Int J Med Inform; 2018 Mar; 111():83-89. PubMed ID: 29425639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.