BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3244695)

  • 1. Analysis and prediction of the location of catalytic residues in enzymes.
    Zvelebil MJ; Sternberg MJ
    Protein Eng; 1988 Jul; 2(2):127-38. PubMed ID: 3244695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of catalytic residues in enzyme active sites.
    Bartlett GJ; Porter CT; Borkakoti N; Thornton JM
    J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural biology of zinc.
    Christianson DW
    Adv Protein Chem; 1991; 42():281-355. PubMed ID: 1793007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalysing new reactions during evolution: economy of residues and mechanism.
    Bartlett GJ; Borkakoti N; Thornton JM
    J Mol Biol; 2003 Aug; 331(4):829-60. PubMed ID: 12909013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chemistry of protein catalysis.
    Holliday GL; Almonacid DE; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Oct; 372(5):1261-77. PubMed ID: 17727879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases.
    Muñoz-Clares RA; González-Segura L; Riveros-Rosas H; Julián-Sánchez A
    Chem Biol Interact; 2015 Jun; 234():45-58. PubMed ID: 25617482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of features for catalytic residue prediction in novel folds.
    Youn E; Peters B; Radivojac P; Mooney SD
    Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site.
    Murray IA; Cann PA; Day PJ; Derrick JP; Sutcliffe MJ; Shaw WV; Leslie AG
    J Mol Biol; 1995 Dec; 254(5):993-1005. PubMed ID: 7500366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding nature's catalytic toolkit.
    Gutteridge A; Thornton JM
    Trends Biochem Sci; 2005 Nov; 30(11):622-9. PubMed ID: 16214343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting enzyme functional surfaces and locating key residues automatically from structures.
    Tseng YY; Liang J
    Ann Biomed Eng; 2007 Jun; 35(6):1037-42. PubMed ID: 17294116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystallographic and enzymatic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase (E2p).
    Hendle J; Mattevi A; Westphal AH; Spee J; de Kok A; Teplyakov A; Hol WG
    Biochemistry; 1995 Apr; 34(13):4287-98. PubMed ID: 7703242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid network for prediction of catalytic residues in enzymes: a comparison survey.
    Zhou J; Yan W; Hu G; Shen B
    Curr Protein Pept Sci; 2016; 17(1):41-51. PubMed ID: 26412789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The geometry of interactions between catalytic residues and their substrates.
    Torrance JW; Holliday GL; Mitchell JB; Thornton JM
    J Mol Biol; 2007 Jun; 369(4):1140-52. PubMed ID: 17466330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families.
    Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M
    J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An insight into the general relationship between the three dimensional structures of enzymes and their electronic wave functions: Implication for the prediction of functional sites of enzymes.
    Fukushima K; Wada M; Sakurai M
    Proteins; 2008 Jun; 71(4):1940-54. PubMed ID: 18186466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of catalytic residues in enzymes based on known tertiary structure, stability profile, and sequence conservation.
    Ota M; Kinoshita K; Nishikawa K
    J Mol Biol; 2003 Apr; 327(5):1053-64. PubMed ID: 12662930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico identification of catalytic residues in azobenzene reductase from Bacillus subtilis and its docking studies with azo dyes.
    Ramanathan K; Shanthi V; Sethumadhavan R
    Interdiscip Sci; 2009 Dec; 1(4):290-7. PubMed ID: 20640807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase.
    Giraldo J; De Maria L; Wodak SJ
    Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.