These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32447122)

  • 41. High added-value products from the hydrothermal carbonisation of olive stones.
    Borrero-López AM; Fierro V; Jeder A; Ouederni A; Masson E; Celzard A
    Environ Sci Pollut Res Int; 2017 Apr; 24(11):9859-9869. PubMed ID: 27873116
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modification of hydrochar increased the capacity to promote anaerobic digestion.
    He J; Ren S; Zhang S; Luo G
    Bioresour Technol; 2021 Dec; 341():125856. PubMed ID: 34479140
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hydrothermal carbonisation of peat-based spent sorbents loaded with metal(loid)s.
    Kasiuliene A; Carabante I; Bhattacharya P; Kumpiene J
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23730-23738. PubMed ID: 31203552
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of process water recirculation on solid and liquid products from hydrothermal carbonization of Laminaria.
    Wang F; Wang J; Gu C; Han Y; Zan S; Wu S
    Bioresour Technol; 2019 Nov; 292():121996. PubMed ID: 31442836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar.
    Sharma HB; Panigrahi S; Dubey BK
    Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of water-washing of wheat straw and hydrothermal temperature on its hydrochar evolution and combustion properties.
    Ma Q; Han L; Huang G
    Bioresour Technol; 2018 Dec; 269():96-103. PubMed ID: 30153551
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion.
    Li R; Liu D; Zhang Y; Zhou J; Tsang YF; Liu Z; Duan N; Zhang Y
    Sci Total Environ; 2019 Feb; 651(Pt 1):61-69. PubMed ID: 30227293
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of bamboo hydrochar on anaerobic digestion of fish processing waste for biogas production.
    Choe U; Mustafa AM; Lin H; Xu J; Sheng K
    Bioresour Technol; 2019 Jul; 283():340-349. PubMed ID: 30925314
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Valorisation to biogas of macroalgal waste streams: a circular approach to bioproducts and bioenergy in Ireland.
    Tedesco S; Stokes J
    Chem Zvesti; 2017; 71(4):721-728. PubMed ID: 28386158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.
    Park KY; Lee K; Kim D
    Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Physicochemical, structural and combustion characterization of food waste hydrochar obtained by hydrothermal carbonization.
    Saqib NU; Baroutian S; Sarmah AK
    Bioresour Technol; 2018 Oct; 266():357-363. PubMed ID: 29982058
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation.
    Garlapalli RK; Wirth B; Reza MT
    Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of the characteristics with hydrothermal carbonisation temperature on poultry slaughterhouse wastes.
    Kim H; Han SK; Song E; Park S
    Waste Manag Res; 2018 Jun; 36(6):535-540. PubMed ID: 29775140
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel.
    Lee J; Hong J; Jang D; Park KY
    J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrothermal carbonization of different wetland biomass wastes: Phosphorus reclamation and hydrochar production.
    Cui X; Lu M; Khan MB; Lai C; Yang X; He Z; Chen G; Yan B
    Waste Manag; 2020 Feb; 102():106-113. PubMed ID: 31670228
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel.
    Minaret J; Dutta A
    Bioresour Technol; 2016 Jan; 200():804-11. PubMed ID: 26584229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization.
    Chen X; Ma X; Peng X; Lin Y; Yao Z
    Bioresour Technol; 2018 Feb; 249():900-907. PubMed ID: 29145116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion.
    Wang X; Zhao J; Yang Q; Sun J; Peng C; Chen F; Xu Q; Wang S; Wang D; Li X; Zeng G
    Bioresour Technol; 2017 Dec; 246():234-241. PubMed ID: 28736144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods.
    Ariunbaatar J; Panico A; Frunzo L; Esposito G; Lens PNL; Pirozzi F
    J Environ Manage; 2014 Dec; 146():142-149. PubMed ID: 25169646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.