These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32447123)

  • 1. Novel insight into pyrolysis behaviors of lignin using in-situ pyrolysis-double ionization time-of-flight mass spectrometry combined with electron paramagnetic resonance spectroscopy.
    Zhu J; Yang H; Hu H; Zhou Y; Li J; Jin L
    Bioresour Technol; 2020 Sep; 312():123555. PubMed ID: 32447123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular products and radicals from pyrolysis of lignin.
    Kibet J; Khachatryan L; Dellinger B
    Environ Sci Technol; 2012 Dec; 46(23):12994-3001. PubMed ID: 23131040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-Free Biomass-Derived Environmentally Persistent Free Radicals (Bio-EPFRs) from Lignin Pyrolysis.
    Khachatryan L; Barekati-Goudarzi M; Asatryan R; Ozarowski A; Boldor D; Lomnicki SM; Cormier SA
    ACS Omega; 2022 Aug; 7(34):30241-30249. PubMed ID: 36061701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unmasking radical-mediated lignin pyrolysis after benzyl hydroxyl shielding.
    Fan Y; Lei M; Zhang Z; Kong X; Xu W; Han Y; Li M; Liu C; Xiao R
    Bioresour Technol; 2021 Dec; 342():125944. PubMed ID: 34537528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Components and Persistent Free Radicals in the Volatiles during Pyrolysis of Lignocellulose Biomass.
    Tao W; Yang X; Li Y; Zhu R; Si X; Pan B; Xing B
    Environ Sci Technol; 2020 Oct; 54(20):13274-13281. PubMed ID: 32966050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical footprinting and regularity revealing during the pyrolysis of technical lignins.
    Fan Y; Zhang Z; Wang Z; Yu H; Kong X; Li P; Li M; Xiao R; Liu C
    Bioresour Technol; 2022 Sep; 360():127648. PubMed ID: 35868468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative study of the pyrolysis of lignocellulose and its major components: characterization and overall distribution of their biochars and volatiles.
    Cao X; Zhong L; Peng X; Sun S; Li S; Liu S; Sun R
    Bioresour Technol; 2014 Mar; 155():21-7. PubMed ID: 24413478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Zeolites on Radical Formation During Lignin Pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2016 Sep; 9(17):2397-403. PubMed ID: 27486717
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy.
    Munk L; Andersen ML; Meyer AS
    Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.
    Kim KH; Bai X; Cady S; Gable P; Brown RC
    ChemSusChem; 2015 Mar; 8(5):894-900. PubMed ID: 25677712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor.
    Zhu J; Jin L; Li J; Bao Z; Li Y; Hu H
    Bioresour Technol; 2019 Oct; 290():121739. PubMed ID: 31302467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. OH-Initiated Reactions of
    Hudzik JM; Bozzelli JW; Asatryan R; Ruckenstein E
    J Phys Chem A; 2020 Jun; 124(24):4905-4915. PubMed ID: 32432474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance between chemical structure and pyrolysis behavior of palm kernel shell lignin.
    Huang Y; Liu H; Yuan H; Zhan H; Zhuang X; Yuan S; Yin X; Wu C
    Sci Total Environ; 2018 Aug; 633():785-795. PubMed ID: 29602117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol.
    Khachatryan L; Xu MX; Wu AJ; Pechagin M; Asatryan R
    J Anal Appl Pyrolysis; 2016 Sep; 121():75-83. PubMed ID: 28344372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into the lignin decomposition mechanism by analysis of the pyrolysis product of Pinus radiata.
    Kim YM; Jae J; Myung S; Sung BH; Dong JI; Park YK
    Bioresour Technol; 2016 Nov; 219():371-377. PubMed ID: 27501034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.