These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 32447158)
1. Interaction of xylitol with whey proteins: Multi-spectroscopic techniques and docking studies. Kong F; Kang S; Tian J; Li M; Liang X; Yang M; Zheng Y; Pi Y; Cao X; Liu Y; Yue X Food Chem; 2020 Oct; 326():126804. PubMed ID: 32447158 [TBL] [Abstract][Full Text] [Related]
2. Study on the interaction mechanism of whey protein isolate with phosphatidylcholine: By multispectral methods and molecular docking. Ma MY; Wu FY; Xu YP; Mu GQ; Qian F; Zhu XM J Food Sci; 2024 Jul; 89(7):4109-4122. PubMed ID: 38957103 [TBL] [Abstract][Full Text] [Related]
3. Binding of safranal to whey proteins in aqueous solution: Combination of headspace solid-phase microextraction/gas chromatography with multi spectroscopic techniques and docking studies. Feyzi S; Varidi M; Housaindokht MR; Es'haghi Z Food Chem; 2019 Jul; 287():313-323. PubMed ID: 30857705 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of the interaction mechanisms of xylitol with β-lactoglobulin and β-casein: Amulti-spectral method and docking study. Kong F; Tian J; Yang M; Zheng Y; Cao X; Yue X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Dec; 243():118824. PubMed ID: 32829156 [TBL] [Abstract][Full Text] [Related]
5. Binding of β-carotene to whey proteins: Multi-spectroscopic techniques and docking studies. Allahdad Z; Varidi M; Zadmard R; Saboury AA; Haertlé T Food Chem; 2019 Mar; 277():96-106. PubMed ID: 30502216 [TBL] [Abstract][Full Text] [Related]
6. Elucidation of Interaction between Whey Proteins and Proanthocyanidins and Its Protective Effects on Proanthocyanidins during In-Vitro Digestion and Storage. Tang C; Tan B; Sun X Molecules; 2021 Sep; 26(18):. PubMed ID: 34576939 [TBL] [Abstract][Full Text] [Related]
7. Anti-cancer study and whey protein complexation of new lanthanum(III) complex with the aim of achieving bioactive anticancer metal-based drugs. Shahraki S; Shiri F; Heidari Majd M; Dahmardeh S J Biomol Struct Dyn; 2019 May; 37(8):2072-2085. PubMed ID: 29768984 [TBL] [Abstract][Full Text] [Related]
8. Interaction mechanism of flavonoids with whey protein isolate: A spectrofluorometric and theoretical investigation. Li J; Tian R; Liang G; Shi R; Hu J; Jiang Z Food Chem; 2021 Sep; 355():129617. PubMed ID: 33784543 [TBL] [Abstract][Full Text] [Related]
9. The mechanism of resveratrol stabilization and degradation by synergistic interactions between constituent proteins of whey protein. Yin X; Wusigale ; Cheng H; Van der Meeren P; Liang L Food Res Int; 2024 Jul; 188():114485. PubMed ID: 38823871 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic and docking studies of the interaction mechanisms of xylitol with α-casein and κ-casein. Kong F; An Y; Jiang L; Tian J; Yang M; Li M; Zhang Z; Guan B; Zheng Y; Yue X Colloids Surf B Biointerfaces; 2021 Oct; 206():111930. PubMed ID: 34182429 [TBL] [Abstract][Full Text] [Related]
11. Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment. Havea P; Singh H; Creamer LK J Dairy Res; 2001 Aug; 68(3):483-97. PubMed ID: 11694050 [TBL] [Abstract][Full Text] [Related]
12. In vitro study on binding interaction of quinapril with bovine serum albumin (BSA) using multi-spectroscopic and molecular docking methods. Shi JH; Pan DQ; Jiang M; Liu TT; Wang Q J Biomol Struct Dyn; 2017 Aug; 35(10):2211-2223. PubMed ID: 27418394 [TBL] [Abstract][Full Text] [Related]
13. Comparison of interaction between three similar chalconoids and α-lactalbumin: Impact on structure and functionality of α-lactalbumin. Jiang Z; Li T; Ma L; Chen W; Yu H; Abdul Q; Hou J; Tian B Food Res Int; 2020 May; 131():109006. PubMed ID: 32247452 [TBL] [Abstract][Full Text] [Related]
14. Interactions between β-Lactoglobulin and 3,3'-Diindolylmethane in Model System. Wang C; Zhou X; Wang H; Sun X; Guo M Molecules; 2019 Jun; 24(11):. PubMed ID: 31181617 [TBL] [Abstract][Full Text] [Related]
15. Folic acid delivery by serum proteins: loading efficacy and protein morphology. Bourassa P; Chanphai P; Tajmir-Riahi HA J Biomol Struct Dyn; 2017 Dec; 35(16):3499-3506. PubMed ID: 27832722 [TBL] [Abstract][Full Text] [Related]
16. Binding between bixin and whey protein at pH 7.4 studied by spectroscopy and isothermal titration calorimetry. Zhang Y; Zhong Q J Agric Food Chem; 2012 Feb; 60(7):1880-6. PubMed ID: 22268806 [TBL] [Abstract][Full Text] [Related]
17. Multi-spectroscopic and molecular modeling approaches to elucidate the binding interaction between bovine serum albumin and darunavir, a HIV protease inhibitor. Shi JH; Zhou KL; Lou YY; Pan DQ Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():362-371. PubMed ID: 28753530 [TBL] [Abstract][Full Text] [Related]
18. Intermolecular interaction of prednisolone with bovine serum albumin: spectroscopic and molecular docking methods. Shi JH; Zhu YY; Wang J; Chen J; Shen YJ Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():287-94. PubMed ID: 23261625 [TBL] [Abstract][Full Text] [Related]
19. Interaction of prodigiosin with HSA and β-Lg: Spectroscopic and molecular docking studies. Rastegari B; Karbalaei-Heidari HR; Yousefi R; Zeinali S; Nabavizadeh M Bioorg Med Chem; 2016 Apr; 24(7):1504-12. PubMed ID: 26924214 [TBL] [Abstract][Full Text] [Related]
20. Investigation on the interaction between triclosan and bovine serum albumin by spectroscopic methods. Gu J; Zheng S; Zhao H; Sun T J Environ Sci Health B; 2020; 55(1):52-59. PubMed ID: 31453744 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]