These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 32447346)
1. Inhibition of ubiquitin-specific protease 7 sensitizes acute myeloid leukemia to chemotherapy. Cartel M; Mouchel PL; Gotanègre M; David L; Bertoli S; Mansat-De Mas V; Besson A; Sarry JE; Manenti S; Didier C Leukemia; 2021 Feb; 35(2):417-432. PubMed ID: 32447346 [TBL] [Abstract][Full Text] [Related]
2. Targeting Myeloperoxidase Disrupts Mitochondrial Redox Balance and Overcomes Cytarabine Resistance in Human Acute Myeloid Leukemia. Hosseini M; Rezvani HR; Aroua N; Bosc C; Farge T; Saland E; Guyonnet-Dupérat V; Zaghdoudi S; Jarrou L; Larrue C; Sabatier M; Mouchel PL; Gotanègre M; Piechaczyk M; Bossis G; Récher C; Sarry JE Cancer Res; 2019 Oct; 79(20):5191-5203. PubMed ID: 31358527 [TBL] [Abstract][Full Text] [Related]
3. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway. Wang H; Liu YC; Zhu CY; Yan F; Wang MZ; Chen XS; Wang XK; Pang BX; Li YH; Liu DH; Gao CJ; Liu SJ; Dou LP J Exp Clin Cancer Res; 2020 Dec; 39(1):278. PubMed ID: 33298132 [TBL] [Abstract][Full Text] [Related]
4. FLT3-ITD cooperates with Rac1 to modulate the sensitivity of leukemic cells to chemotherapeutic agents via regulation of DNA repair pathways. Wu M; Li L; Hamaker M; Small D; Duffield AS Haematologica; 2019 Dec; 104(12):2418-2428. PubMed ID: 30975911 [TBL] [Abstract][Full Text] [Related]
5. FLT3 inhibition upregulates HDAC8 via FOXO to inactivate p53 and promote maintenance of FLT3-ITD+ acute myeloid leukemia. Long J; Jia MY; Fang WY; Chen XJ; Mu LL; Wang ZY; Shen Y; Xiang RF; Wang LN; Wang L; Jiang CH; Jiang JL; Zhang WJ; Sun YD; Chang L; Gao WH; Wang Y; Li JM; Hong DL; Liang AB; Hu J Blood; 2020 Apr; 135(17):1472-1483. PubMed ID: 32315388 [TBL] [Abstract][Full Text] [Related]
6. Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. Hu S; Niu H; Inaba H; Orwick S; Rose C; Panetta JC; Yang S; Pounds S; Fan Y; Calabrese C; Rehg JE; Campana D; Rubnitz JE; Baker SD J Natl Cancer Inst; 2011 Jun; 103(11):893-905. PubMed ID: 21487100 [TBL] [Abstract][Full Text] [Related]
7. Integrated genomic analyses identify WEE1 as a critical mediator of cell fate and a novel therapeutic target in acute myeloid leukemia. Porter CC; Kim J; Fosmire S; Gearheart CM; van Linden A; Baturin D; Zaberezhnyy V; Patel PR; Gao D; Tan AC; DeGregori J Leukemia; 2012 Jun; 26(6):1266-76. PubMed ID: 22289989 [TBL] [Abstract][Full Text] [Related]
8. Synthetic lethality of combined AT-101 with idarubicin in acute myeloid leukemia via blockade of DNA repair and activation of intrinsic apoptotic pathway. Yang Q; Chen K; Zhang L; Feng L; Fu G; Jiang S; Bi S; Lin C; Zhou Y; Zhao H; Chen XL; Fu G; Xu B Cancer Lett; 2019 Oct; 461():31-43. PubMed ID: 31301319 [TBL] [Abstract][Full Text] [Related]
9. USP7 inhibition alters homologous recombination repair and targets CLL cells independently of ATM/p53 functional status. Agathanggelou A; Smith E; Davies NJ; Kwok M; Zlatanou A; Oldreive CE; Mao J; Da Costa D; Yadollahi S; Perry T; Kearns P; Skowronska A; Yates E; Parry H; Hillmen P; Reverdy C; Delansorne R; Paneesha S; Pratt G; Moss P; Taylor AMR; Stewart GS; Stankovic T Blood; 2017 Jul; 130(2):156-166. PubMed ID: 28495793 [TBL] [Abstract][Full Text] [Related]
10. Low-dose triptolide enhances antitumor effect of JQ1 on acute myeloid leukemia through inhibiting RNA polymerase II in vitro and in vivo. Shi Y; Zhao H; Ye J; Li Z; Deng M; Zha J; Zhou Y; Zeng H; Lin Y; Pu X; Guo C; Song H; Qiu Y; Xu B Mol Carcinog; 2020 Sep; 59(9):1076-1087. PubMed ID: 32691884 [TBL] [Abstract][Full Text] [Related]
11. Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells. Kouzi F; Zibara K; Bourgeais J; Picou F; Gallay N; Brossaud J; Dakik H; Roux B; Hamard S; Le Nail LR; Hleihel R; Foucault A; Ravalet N; Rouleux-Bonnin F; Gouilleux F; Mazurier F; Bene MC; Akl H; Gyan E; Domenech J; El-Sabban M; Herault O Oncogene; 2020 Feb; 39(6):1198-1212. PubMed ID: 31649334 [TBL] [Abstract][Full Text] [Related]
12. Abivertinib, a novel BTK inhibitor: Anti-Leukemia effects and synergistic efficacy with homoharringtonine in acute myeloid leukemia. Huang S; Pan J; Jin J; Li C; Li X; Huang J; Huang X; Yan X; Li F; Yu M; Hu C; Jin J; Xu Y; Ling Q; Ye W; Wang Y; Jin J Cancer Lett; 2019 Oct; 461():132-143. PubMed ID: 31310800 [TBL] [Abstract][Full Text] [Related]
13. ZEB1 serves as an oncogene in acute myeloid leukaemia via regulating the PTEN/PI3K/AKT signalling pathway by combining with P53. Li L; Feng Y; Hu S; Du Y; Xu X; Zhang M; Peng X; Chen F J Cell Mol Med; 2021 Jun; 25(11):5295-5304. PubMed ID: 33960640 [TBL] [Abstract][Full Text] [Related]
14. BCL6 maintains survival and self-renewal of primary human acute myeloid leukemia cells. Kawabata KC; Zong H; Meydan C; Wyman S; Wouters BJ; Sugita M; Goswami S; Albert M; Yip W; Roboz GJ; Chen Z; Delwel R; Carroll M; Mason CE; Melnick A; Guzman ML Blood; 2021 Feb; 137(6):812-825. PubMed ID: 32911532 [TBL] [Abstract][Full Text] [Related]
15. MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia. Sanjiv K; Calderón-Montaño JM; Pham TM; Erkers T; Tsuber V; Almlöf I; Höglund A; Heshmati Y; Seashore-Ludlow B; Nagesh Danda A; Gad H; Wiita E; Göktürk C; Rasti A; Friedrich S; Centio A; Estruch M; Våtsveen TK; Struyf N; Visnes T; Scobie M; Koolmeister T; Henriksson M; Wallner O; Sandvall T; Lehmann S; Theilgaard-Mönch K; Garnett MJ; Östling P; Walfridsson J; Helleday T; Warpman Berglund U Cancer Res; 2021 Nov; 81(22):5733-5744. PubMed ID: 34593524 [TBL] [Abstract][Full Text] [Related]
16. SIRT3 deacetylase activity confers chemoresistance in AML via regulation of mitochondrial oxidative phosphorylation. Ma J; Liu B; Yu D; Zuo Y; Cai R; Yang J; Cheng J Br J Haematol; 2019 Oct; 187(1):49-64. PubMed ID: 31236919 [TBL] [Abstract][Full Text] [Related]
17. A niche-like culture system allowing the maintenance of primary human acute myeloid leukemia-initiating cells: a new tool to decipher their chemoresistance and self-renewal mechanisms. Griessinger E; Anjos-Afonso F; Pizzitola I; Rouault-Pierre K; Vargaftig J; Taussig D; Gribben J; Lassailly F; Bonnet D Stem Cells Transl Med; 2014 Apr; 3(4):520-9. PubMed ID: 24493855 [TBL] [Abstract][Full Text] [Related]
18. Apoptosis repressor with caspase recruitment domain is regulated by MAPK/PI3K and confers drug resistance and survival advantage to AML. Mak PY; Mak DH; Mu H; Shi Y; Ruvolo P; Ruvolo V; Jacamo R; Burks JK; Wei W; Huang X; Kornblau SM; Andreeff M; Carter BZ Apoptosis; 2014 Apr; 19(4):698-707. PubMed ID: 24337870 [TBL] [Abstract][Full Text] [Related]
19. GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Zhou C; Du J; Zhao L; Liu W; Zhao T; Liang H; Fang P; Zhang K; Zeng H Cell Death Dis; 2021 Mar; 12(3):231. PubMed ID: 33658491 [TBL] [Abstract][Full Text] [Related]
20. Blockade of deubiquitinase USP7 overcomes bortezomib resistance by suppressing NF-κB signaling pathway in multiple myeloma. Yao Y; Zhang Y; Shi M; Sun Y; Chen C; Niu M; Zhang Q; Zeng L; Yao R; Li H; Yang J; Li Z; Xu K J Leukoc Biol; 2018 Dec; 104(6):1105-1115. PubMed ID: 30024656 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]