These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 32447812)
1. Effectiveness of host cell protein removal using depth filtration with a filter containing diatomaceous earth. Nejatishahidein N; Borujeni EE; Roush DJ; Zydney AL Biotechnol Prog; 2020 Nov; 36(6):e3028. PubMed ID: 32447812 [TBL] [Abstract][Full Text] [Related]
2. Comparison of host cell protein removal by depth filters with diatomaceous earth and synthetic silica filter aids using model proteins. Chu LK; Borujeni EE; Xu X; Ghose S; Zydney AL Biotechnol Bioeng; 2023 Jul; 120(7):1882-1890. PubMed ID: 36929487 [TBL] [Abstract][Full Text] [Related]
3. Scale-up issues for commercial depth filters in bioprocessing. Nejatishahidein N; Kim M; Jung SY; Borujeni EE; Fernandez-Cerezo L; Roush DJ; Borhan A; Zydney AL Biotechnol Bioeng; 2022 Apr; 119(4):1105-1114. PubMed ID: 35032027 [TBL] [Abstract][Full Text] [Related]
4. Analysis of fouling and breakthrough of process related impurities during depth filtration using confocal microscopy. Parau M; Johnson TF; Pullen J; Bracewell DG Biotechnol Prog; 2022 Mar; 38(2):e3233. PubMed ID: 35037432 [TBL] [Abstract][Full Text] [Related]
5. Depth filter material process interaction in the harvest of mammalian cells. Parau M; Pullen J; Bracewell DG Biotechnol Prog; 2023; 39(3):e3329. PubMed ID: 36775837 [TBL] [Abstract][Full Text] [Related]
6. Exploitation of the adsorptive properties of depth filters for host cell protein removal during monoclonal antibody purification. Yigzaw Y; Piper R; Tran M; Shukla AA Biotechnol Prog; 2006; 22(1):288-96. PubMed ID: 16454522 [TBL] [Abstract][Full Text] [Related]
7. Pretreatments for enhancing clarification efficiency of depth filtration during production of monoclonal antibody therapeutics. Hadpe SR; Mohite V; Alva S; Rathore AS Biotechnol Prog; 2020 Sep; 36(5):e2996. PubMed ID: 32223061 [TBL] [Abstract][Full Text] [Related]
8. Improved HCP Reduction Using a New, All-Synthetic Depth Filtration Media Within an Antibody Purification Process. Nguyen HC; Langland AL; Amara JP; Dullen M; Kahn DS; Costanzo JA Biotechnol J; 2019 Jan; 14(1):e1700771. PubMed ID: 29710434 [TBL] [Abstract][Full Text] [Related]
9. Development of adsorptive hybrid filters to enable two-step purification of biologics. Singh N; Arunkumar A; Peck M; Voloshin AM; Moreno AM; Tan Z; Hester J; Borys MC; Li ZJ MAbs; 2017; 9(2):350-363. PubMed ID: 27929735 [TBL] [Abstract][Full Text] [Related]
10. Robust depth filter sizing for centrate clarification. Lutz H; Chefer K; Felo M; Cacace B; Hove S; Wang B; Blanchard M; Oulundsen G; Piper R; Zhao X Biotechnol Prog; 2015; 31(6):1542-50. PubMed ID: 26518411 [TBL] [Abstract][Full Text] [Related]
11. Design of a filter train for precipitate removal in monoclonal antibody downstream processing. Kandula S; Babu S; Jin M; Shukla AA Biotechnol Appl Biochem; 2009 Oct; 54(3):149-55. PubMed ID: 19656082 [TBL] [Abstract][Full Text] [Related]
12. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters. Singh N; Pizzelli K; Romero JK; Chrostowski J; Evangelist G; Hamzik J; Soice N; Cheng KS Biotechnol Bioeng; 2013 Jul; 110(7):1964-72. PubMed ID: 23334838 [TBL] [Abstract][Full Text] [Related]
13. Control of antibody high and low molecular weight species by depth filtration-based cell culture harvesting. Yu D; Mayani M; Song Y; Xing Z; Ghose S; Li ZJ Biotechnol Bioeng; 2019 Oct; 116(10):2610-2620. PubMed ID: 31184373 [TBL] [Abstract][Full Text] [Related]
14. Single-stage chromatographic clarification of Chinese Hamster Ovary cell harvest reduces cost of protein production. O'Mara B; Singh NK; Menendez A; Tipton B; Vail A; Voloshin A; Buechler Y; Anderson SM Biotechnol Prog; 2023 Mar; 39(2):e3323. PubMed ID: 36598038 [TBL] [Abstract][Full Text] [Related]
15. Virus removal in ceramic depth filters based on diatomaceous earth. Michen B; Meder F; Rust A; Fritsch J; Aneziris C; Graule T Environ Sci Technol; 2012 Jan; 46(2):1170-7. PubMed ID: 22191487 [TBL] [Abstract][Full Text] [Related]
16. PDADMAC flocculation of Chinese hamster ovary cells: enabling a centrifuge-less harvest process for monoclonal antibodies. McNerney T; Thomas A; Senczuk A; Petty K; Zhao X; Piper R; Carvalho J; Hammond M; Sawant S; Bussiere J MAbs; 2015; 7(2):413-28. PubMed ID: 25706650 [TBL] [Abstract][Full Text] [Related]
17. Increasing the capacity of parvovirus-retentive membranes: performance of the Viresolve Prefilter. Bolton GR; Spector S; Lacasse D Biotechnol Appl Biochem; 2006 Jan; 43(Pt 1):55-63. PubMed ID: 16207176 [TBL] [Abstract][Full Text] [Related]
18. Process cost and facility considerations in the selection of primary cell culture clarification technology. Felo M; Christensen B; Higgins J Biotechnol Prog; 2013; 29(5):1239-45. PubMed ID: 23847160 [TBL] [Abstract][Full Text] [Related]
19. Development of a novel and efficient cell culture flocculation process using a stimulus responsive polymer to streamline antibody purification processes. Kang YK; Hamzik J; Felo M; Qi B; Lee J; Ng S; Liebisch G; Shanehsaz B; Singh N; Persaud K; Ludwig DL; Balderes P Biotechnol Bioeng; 2013 Nov; 110(11):2928-37. PubMed ID: 23740533 [TBL] [Abstract][Full Text] [Related]
20. Purification of monoclonal antibodies entirely in flow-through mode. Yamada T; Yamamoto K; Ishihara T; Ohta S J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Sep; 1061-1062():110-116. PubMed ID: 28728084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]