BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32447956)

  • 21. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method.
    Fedorov DG; Nakamura T
    J Phys Chem Lett; 2022 Feb; 13(6):1596-1601. PubMed ID: 35142207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Examination of the hydrogen-bonding networks in small water clusters (n = 2-5, 13, 17) using absolutely localized molecular orbital energy decomposition analysis.
    Cobar EA; Horn PR; Bergman RG; Head-Gordon M
    Phys Chem Chem Phys; 2012 Nov; 14(44):15328-39. PubMed ID: 23052011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fully analytic energy gradient in the fragment molecular orbital method.
    Nagata T; Brorsen K; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2011 Mar; 134(12):124115. PubMed ID: 21456653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pair interaction energy decomposition analysis.
    Fedorov DG; Kitaura K
    J Comput Chem; 2007 Jan; 28(1):222-37. PubMed ID: 17109433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-body expansion of the fragment molecular orbital method combined with density-functional tight-binding.
    Nishimoto Y; Fedorov DG
    J Comput Chem; 2017 Mar; 38(7):406-418. PubMed ID: 28114730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of a Many-Body Force Field for Aqueous Alkali Metal and Halogen Ions: An Energy Decomposition Analysis Guided Approach.
    Das AK; Liu M; Head-Gordon T
    J Chem Theory Comput; 2022 Feb; 18(2):953-967. PubMed ID: 35072483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nature of Halide-Water Interactions: Insights from Many-Body Representations and Density Functional Theory.
    Bizzarro BB; Egan CK; Paesani F
    J Chem Theory Comput; 2019 May; 15(5):2983-2995. PubMed ID: 30913392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward chemical accuracy in the description of ion-water interactions through many-body representations. Alkali-water dimer potential energy surfaces.
    Riera M; Mardirossian N; Bajaj P; Götz AW; Paesani F
    J Chem Phys; 2017 Oct; 147(16):161715. PubMed ID: 29096469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive Simulations of Ionization Energies of Solvated Halide Ions with Relativistic Embedded Equation of Motion Coupled Cluster Theory.
    Bouchafra Y; Shee A; Réal F; Vallet V; Severo Pereira Gomes A
    Phys Rev Lett; 2018 Dec; 121(26):266001. PubMed ID: 30636145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time-dependent density functional theory based upon the fragment molecular orbital method.
    Chiba M; Fedorov DG; Kitaura K
    J Chem Phys; 2007 Sep; 127(10):104108. PubMed ID: 17867738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening.
    Amari S; Aizawa M; Zhang J; Fukuzawa K; Mochizuki Y; Iwasawa Y; Nakata K; Chuman H; Nakano T
    J Chem Inf Model; 2006; 46(1):221-30. PubMed ID: 16426058
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the accuracy of frozen density embedding calculations with hybrid and orbital-dependent functionals for non-bonded interaction energies.
    Laricchia S; Fabiano E; Della Sala F
    J Chem Phys; 2012 Jul; 137(1):014102. PubMed ID: 22779632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing Many-Body Effects of Water Self-Ions. I: OH
    Egan CK; Paesani F
    J Chem Theory Comput; 2018 Apr; 14(4):1982-1997. PubMed ID: 29543452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular energies from an incremental fragmentation method.
    Meitei OR; Heßelmann A
    J Chem Phys; 2016 Feb; 144(8):084109. PubMed ID: 26931683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of three-body terms in the fragment molecular orbital method.
    Fedorov DG; Kitaura K
    J Chem Phys; 2004 Apr; 120(15):6832-40. PubMed ID: 15267582
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.
    Wang B; Yang KR; Xu X; Isegawa M; Leverentz HR; Truhlar DG
    Acc Chem Res; 2014 Sep; 47(9):2731-8. PubMed ID: 24841937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring GPCR-Ligand Interactions with the Fragment Molecular Orbital (FMO) Method.
    Chudyk EI; Sarrat L; Aldeghi M; Fedorov DG; Bodkin MJ; James T; Southey M; Robinson R; Morao I; Heifetz A
    Methods Mol Biol; 2018; 1705():179-195. PubMed ID: 29188563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessing Many-Body Effects of Water Self-Ions. II: H
    Egan CK; Paesani F
    J Chem Theory Comput; 2019 Sep; 15(9):4816-4833. PubMed ID: 31345030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterising GPCR-ligand interactions using a fragment molecular orbital-based approach.
    Heifetz A; James T; Southey M; Morao I; Aldeghi M; Sarrat L; Fedorov DG; Bodkin MJ; Townsend-Nicholson A
    Curr Opin Struct Biol; 2019 Apr; 55():85-92. PubMed ID: 31022570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment and acceleration of binding energy calculations for protein-ligand complexes by the fragment molecular orbital method.
    Otsuka T; Okimoto N; Taiji M
    J Comput Chem; 2015 Nov; 36(30):2209-18. PubMed ID: 26400829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.