These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of an operon and its regulator required for autoaggregation in Endo R; Hotta S; Wakinaka T; Mogi Y; Watanabe J Appl Environ Microbiol; 2023 Dec; 89(12):e0145823. PubMed ID: 38014957 [No Abstract] [Full Text] [Related]
3. Polysaccharide intercellular adhesin and proper phospholipid composition are important for aggregation in Yanagihara A; Matsue K; Kobayashi K; Wakinaka T; Mogi Y; Watanabe J Appl Environ Microbiol; 2024 May; 90(5):e0033424. PubMed ID: 38624197 [TBL] [Abstract][Full Text] [Related]
4. Transposition of IS Wakinaka T; Watanabe J Appl Environ Microbiol; 2019 May; 85(10):. PubMed ID: 30877114 [No Abstract] [Full Text] [Related]
5. Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis. Eckert C; Lecerf M; Dubost L; Arthur M; Mesnage S J Bacteriol; 2006 Dec; 188(24):8513-9. PubMed ID: 17041059 [TBL] [Abstract][Full Text] [Related]
6. Effects of Tetragenococcus halophilus and Candida versatilis on the production of aroma-active and umami-taste compounds during soy sauce fermentation. Zhang L; Zhang L; Xu Y J Sci Food Agric; 2020 Apr; 100(6):2782-2790. PubMed ID: 32020610 [TBL] [Abstract][Full Text] [Related]
7. Survival strategy of the salt-tolerant lactic acid bacterium, Tetragenococcus halophilus, to counteract koji mold, Aspergillus oryzae, in soy sauce brewing. Nishimura I; Shinohara Y; Oguma T; Koyama Y Biosci Biotechnol Biochem; 2018 Aug; 82(8):1437-1443. PubMed ID: 29629630 [TBL] [Abstract][Full Text] [Related]
8. The diversity among the species Tetragenococcus halophilus including new isolates from a lupine seed fermentation. Link T; Vogel RF; Ehrmann MA BMC Microbiol; 2021 Nov; 21(1):320. PubMed ID: 34798831 [TBL] [Abstract][Full Text] [Related]
9. Application of a low acetate-producing strain of Tetragenococcus halophilus to soy sauce fermentation. Higuchi K; Nukagawa Y; Wakinaka T; Watanabe J; Mogi Y J Biosci Bioeng; 2024 Oct; ():. PubMed ID: 39426905 [TBL] [Abstract][Full Text] [Related]
10. Ratio of Histamine-Producing/Non-Histamine-Producing Subgroups of Tetragenococcus halophilus Determines the Histamine Accumulation during Spontaneous Fermentation of Soy Sauce. Ma J; Nie Y; Zhang L; Xu Y Appl Environ Microbiol; 2023 Mar; 89(3):e0188422. PubMed ID: 36802225 [TBL] [Abstract][Full Text] [Related]
11. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds. Udomsil N; Rodtong S; Tanasupawat S; Yongsawatdigul J Int J Food Microbiol; 2010 Jul; 141(3):186-94. PubMed ID: 20541276 [TBL] [Abstract][Full Text] [Related]
12. Examining the impact of Wang Q; Cui R; Liu X; Zheng X; Yao Y; Zhao G Crit Rev Food Sci Nutr; 2024; 64(29):10873-10884. PubMed ID: 37395610 [TBL] [Abstract][Full Text] [Related]
13. Effects of co-inoculation and sequential inoculation of Tetragenococcus halophilus and Zygosaccharomyces rouxii on soy sauce fermentation. Devanthi PVP; Linforth R; Onyeaka H; Gkatzionis K Food Chem; 2018 Feb; 240():1-8. PubMed ID: 28946215 [TBL] [Abstract][Full Text] [Related]
14. Comparative genomics of Tetragenococcus halophilus. Nishimura I; Shiwa Y; Sato A; Oguma T; Yoshikawa H; Koyama Y J Gen Appl Microbiol; 2018 Jan; 63(6):369-372. PubMed ID: 29046500 [No Abstract] [Full Text] [Related]
15. Influence of yeast and lactic acid bacterium on the constituent profile of soy sauce during fermentation. Harada R; Yuzuki M; Ito K; Shiga K; Bamba T; Fukusaki E J Biosci Bioeng; 2017 Feb; 123(2):203-208. PubMed ID: 27939139 [TBL] [Abstract][Full Text] [Related]
16. Targeted Screening for Spontaneous Insertion Mutations in a Lactic Acid Bacterium, Tetragenococcus halophilus. Nukagawa Y; Wakinaka T; Mogi Y; Watanabe J Appl Environ Microbiol; 2023 Mar; 89(3):e0200522. PubMed ID: 36809065 [TBL] [Abstract][Full Text] [Related]
17. Segregation of Tetragenococcus halophilus and Zygosaccharomyces rouxii using W Devanthi PVP; El Kadri H; Bowden A; Spyropoulos F; Gkatzionis K Food Res Int; 2018 Mar; 105():333-343. PubMed ID: 29433222 [TBL] [Abstract][Full Text] [Related]
18. Quantification of viable bacterial starter cultures of Virgibacillus sp. and Tetragenococcus halophilus in fish sauce fermentation by real-time quantitative PCR. Udomsil N; Chen S; Rodtong S; Yongsawatdigul J Food Microbiol; 2016 Aug; 57():54-62. PubMed ID: 27052702 [TBL] [Abstract][Full Text] [Related]
19. Isolation of arginine deiminase system-deficient mutants of Tetragenococcus halophilus using arginine analog canavanine. Wakinaka T; Watanabe J; Mogi Y J Biosci Bioeng; 2024 Oct; 138(4):324-327. PubMed ID: 39079833 [TBL] [Abstract][Full Text] [Related]