These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 32448143)

  • 1. Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review.
    Marquez-Chin C; Popovic MR
    Biomed Eng Online; 2020 May; 19(1):34. PubMed ID: 32448143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration.
    Ajiboye AB; Willett FR; Young DR; Memberg WD; Murphy BA; Miller JP; Walter BL; Sweet JA; Hoyen HA; Keith MW; Peckham PH; Simeral JD; Donoghue JP; Hochberg LR; Kirsch RF
    Lancet; 2017 May; 389(10081):1821-1830. PubMed ID: 28363483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research on the progress of neuroprosthesis for the limb motor system].
    Wan BK; Li J; Ming D
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Jul; 30(4):235-40. PubMed ID: 17039925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance.
    Dunkelberger N; Schearer EM; O'Malley MK
    Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. End-user and clinician perspectives on the viability of wearable functional electrical stimulation garments after stroke and spinal cord injury.
    Moineau B; Myers M; Ali SS; Popovic MR; Hitzig SL
    Disabil Rehabil Assist Technol; 2021 Apr; 16(3):241-250. PubMed ID: 31592679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M; Milekovic T; Borton D; Wagner F; Moraud EM; Mignardot JB; Buse N; Gandar J; Barraud Q; Xing D; Rey E; Duis S; Jianzhong Y; Ko WK; Li Q; Detemple P; Denison T; Micera S; Bezard E; Bloch J; Courtine G
    Nature; 2016 Nov; 539(7628):284-288. PubMed ID: 27830790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats.
    Hayashi N; Himi N; Nakamura-Maruyama E; Okabe N; Sakamoto I; Hasegawa T; Miyamoto O
    Spine J; 2019 Jun; 19(6):1094-1105. PubMed ID: 30583107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury.
    Karamian BA; Siegel N; Nourie B; Serruya MD; Heary RF; Harrop JS; Vaccaro AR
    J Orthop Traumatol; 2022 Jan; 23(1):2. PubMed ID: 34989884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprostheses for grasping.
    Popovic MR; Popovic DB; Keller T
    Neurol Res; 2002 Jul; 24(5):443-52. PubMed ID: 12117312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuromodulation in the restoration of function after spinal cord injury.
    James ND; McMahon SB; Field-Fote EC; Bradbury EJ
    Lancet Neurol; 2018 Oct; 17(10):905-917. PubMed ID: 30264729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ten-Year Experience With Continuous Low-Frequency Pelvic Somatic Nerves Stimulation for Recovery of Voluntary Walking in People With Chronic Spinal Cord Injury: A Prospective Case Series of 29 Consecutive Patients.
    Possover M
    Arch Phys Med Rehabil; 2021 Jan; 102(1):50-57. PubMed ID: 33065123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical applications of electrical stimulation after spinal cord injury.
    Creasey GH; Ho CH; Triolo RJ; Gater DR; DiMarco AF; Bogie KM; Keith MW
    J Spinal Cord Med; 2004; 27(4):365-75. PubMed ID: 15484667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain-machine interface facilitated neurorehabilitation via spinal stimulation after spinal cord injury: Recent progress and future perspectives.
    Alam M; Rodrigues W; Pham BN; Thakor NV
    Brain Res; 2016 Sep; 1646():25-33. PubMed ID: 27216571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurocontrol of Movement in Humans With Spinal Cord Injury.
    Dimitrijevic MR; Danner SM; Mayr W
    Artif Organs; 2015 Oct; 39(10):823-33. PubMed ID: 26471132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical stimulation for therapy and mobility after spinal cord injury.
    Stein RB; Chong SL; James KB; Kido A; Bell GJ; Tubman LA; BĂ©langer M
    Prog Brain Res; 2002; 137():27-34. PubMed ID: 12440357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives of individuals with chronic spinal cord injury following novel balance training involving functional electrical stimulation with visual feedback: a qualitative exploratory study.
    Houston DJ; Unger J; Lee JW; Masani K; Musselman KE
    J Neuroeng Rehabil; 2021 Apr; 18(1):57. PubMed ID: 33794948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraspinal microstimulation for the recovery of function following spinal cord injury.
    Bamford JA; Mushahwar VK
    Prog Brain Res; 2011; 194():227-39. PubMed ID: 21867807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroprosthetic technology for individuals with spinal cord injury.
    Collinger JL; Foldes S; Bruns TM; Wodlinger B; Gaunt R; Weber DJ
    J Spinal Cord Med; 2013 Jul; 36(4):258-72. PubMed ID: 23820142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor neuroprosthesis for promoting recovery of function after stroke.
    Mendes LA; Lima IN; Souza T; do Nascimento GC; Resqueti VR; Fregonezi GA
    Cochrane Database Syst Rev; 2020 Jan; 1(1):CD012991. PubMed ID: 31935047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroprosthesis for individuals with spinal cord injury.
    Kilgore KL; Anderson KD; Peckham PH
    Neurol Res; 2023 Oct; 45(10):893-905. PubMed ID: 32727296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.