These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32448155)

  • 1. Efficient dual-negative selection for bacterial genome editing.
    Cianfanelli FR; Cunrath O; Bumann D
    BMC Microbiol; 2020 May; 20(1):129. PubMed ID: 32448155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile and highly efficient method for scarless genome editing in Escherichia coli and Salmonella enterica.
    Kim J; Webb AM; Kershner JP; Blaskowski S; Copley SD
    BMC Biotechnol; 2014 Sep; 14():84. PubMed ID: 25255806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A rapid seamless method for gene knockout in Pseudomonas aeruginosa.
    Huang W; Wilks A
    BMC Microbiol; 2017 Sep; 17(1):199. PubMed ID: 28927382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Native CRISPR-Cas-Mediated Genome Editing Enables Dissecting and Sensitizing Clinical Multidrug-Resistant P. aeruginosa.
    Xu Z; Li M; Li Y; Cao H; Miao L; Xu Z; Higuchi Y; Yamasaki S; Nishino K; Woo PCY; Xiang H; Yan A
    Cell Rep; 2019 Nov; 29(6):1707-1717.e3. PubMed ID: 31693906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Repurposing the Native Type I-F CRISPR-Cas System in
    Xu Z; Li Y; Yan A
    STAR Protoc; 2020 Jun; 1(1):100039. PubMed ID: 33111087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple Plasmids Contribute to Antibiotic Resistance and Macrophage Survival In Vitro in CMY2-Bearing Salmonella enterica.
    Kempf AJ; Hulsebus HJ; Akbar S
    Foodborne Pathog Dis; 2016 Jul; 13(7):398-404. PubMed ID: 27070176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for Escherichia coli genome editing combining in vivo cloning and targeted long-length chromosomal insertion.
    Hook CD; Samsonov VV; Ublinskaya AA; Kuvaeva TM; Andreeva EV; Gorbacheva LY; Stoynova NV
    J Microbiol Methods; 2016 Nov; 130():83-91. PubMed ID: 27567891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus
    Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI
    Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete genetic analysis of a Salmonella enterica serovar Indiana isolate accompanying four plasmids carrying mcr-1, ESBL and other resistance genes in China.
    Wang J; Li X; Li J; Hurley D; Bai X; Yu Z; Cao Y; Wall E; Fanning S; Bai L
    Vet Microbiol; 2017 Oct; 210():142-146. PubMed ID: 29103683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli.
    Feng X; Zhao D; Zhang X; Ding X; Bi C
    Biotechnol J; 2018 Sep; 13(9):e1700604. PubMed ID: 29790644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast and robust iterative genome-editing method based on a Rock-Paper-Scissors strategy.
    Wang J; Sui X; Ding Y; Fu Y; Feng X; Liu M; Zhang Y; Xian M; Zhao G
    Nucleic Acids Res; 2021 Jan; 49(2):e12. PubMed ID: 33270888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Salmonella gene rma (ramA) and multiple-drug-resistant Salmonella enterica serovar typhimurium.
    van der Straaten T; Janssen R; Mevius DJ; van Dissel JT
    Antimicrob Agents Chemother; 2004 Jun; 48(6):2292-4. PubMed ID: 15155237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of new versatile plasmid-based systems for λRed-mediated Escherichia coli genome engineering.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2018 Aug; 151():48-56. PubMed ID: 29885886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating Single Nucleotide Point Mutations in E. coli with the No-SCAR System.
    Ellington AJ; Reisch CR
    Methods Mol Biol; 2022; 2479():119-133. PubMed ID: 35583736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-based efficient genome editing in Staphylococcus aureus.
    Liu Q; Jiang Y; Shao L; Yang P; Sun B; Yang S; Chen D
    Acta Biochim Biophys Sin (Shanghai); 2017 Sep; 49(9):764-770. PubMed ID: 28910979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.