These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 32448609)
1. Transforming growth factor-β mimics the key proteome properties of CD133 Bryukhovetskiy I; Shevchenko V; Arnotskaya N; Kushnir T; Pak O; Victor Z; Zaitsev S; Khotimchenko Y; Bryukhovetskiy A; Sharma A; Sharma HS Int Rev Neurobiol; 2020; 151():219-242. PubMed ID: 32448609 [TBL] [Abstract][Full Text] [Related]
2. Molecular determinants of the interaction between glioblastoma CD133 Shevchenko V; Arnotskaya N; Pak O; Sharma A; Sharma HS; Khotimchenko Y; Bryukhovetskiy A; Bryukhovetskiy I Int Rev Neurobiol; 2020; 151():155-169. PubMed ID: 32448605 [TBL] [Abstract][Full Text] [Related]
3. Proteins of Wnt signaling pathway in cancer stem cells of human glioblastoma. Shevchenko V; Arnotskaya N; Zaitsev S; Sharma A; Sharma HS; Bryukhovetskiy A; Pak O; Khotimchenko Y; Bryukhovetskiy I Int Rev Neurobiol; 2020; 151():185-200. PubMed ID: 32448607 [TBL] [Abstract][Full Text] [Related]
4. Proteins of the Wnt signaling pathway as targets for the regulation of CD133+ cancer stem cells in glioblastoma. Shevchenko V; Arnotskaya N; Korneyko M; Zaytsev S; Khotimchenko Y; Sharma H; Bryukhovetskiy I Oncol Rep; 2019 May; 41(5):3080-3088. PubMed ID: 30864699 [TBL] [Abstract][Full Text] [Related]
5. Extracellular Vesicles Released by Glioblastoma Cells Stimulate Normal Astrocytes to Acquire a Tumor-Supportive Phenotype Via p53 and MYC Signaling Pathways. Hallal S; Mallawaaratchy DM; Wei H; Ebrahimkhani S; Stringer BW; Day BW; Boyd AW; Guillemin GJ; Buckland ME; Kaufman KL Mol Neurobiol; 2019 Jun; 56(6):4566-4581. PubMed ID: 30353492 [TBL] [Abstract][Full Text] [Related]
6. Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Annabi B; Lachambre MP; Plouffe K; Sartelet H; Béliveau R Mol Carcinog; 2009 Oct; 48(10):910-9. PubMed ID: 19326372 [TBL] [Abstract][Full Text] [Related]
7. HSP47 Promotes Glioblastoma Stemlike Cell Survival by Modulating Tumor Microenvironment Extracellular Matrix through TGF-β Pathway. Jiang X; Zhou T; Wang Z; Qi B; Xia H ACS Chem Neurosci; 2017 Jan; 8(1):128-134. PubMed ID: 27696866 [TBL] [Abstract][Full Text] [Related]
8. Nuclear receptor TLX inhibits TGF-β signaling in glioblastoma. Johansson E; Zhai Q; Zeng ZJ; Yoshida T; Funa K Exp Cell Res; 2016 May; 343(2):118-125. PubMed ID: 27048878 [TBL] [Abstract][Full Text] [Related]
9. Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression. Wang X; Prager BC; Wu Q; Kim LJY; Gimple RC; Shi Y; Yang K; Morton AR; Zhou W; Zhu Z; Obara EAA; Miller TE; Song A; Lai S; Hubert CG; Jin X; Huang Z; Fang X; Dixit D; Tao W; Zhai K; Chen C; Dong Z; Zhang G; Dombrowski SM; Hamerlik P; Mack SC; Bao S; Rich JN Cell Stem Cell; 2018 Apr; 22(4):514-528.e5. PubMed ID: 29625067 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma. Iwadate Y; Matsutani T; Hirono S; Shinozaki N; Saeki N J Neurooncol; 2016 Aug; 129(1):101-7. PubMed ID: 27193555 [TBL] [Abstract][Full Text] [Related]
11. Targeting cancer stem cells in glioblastoma multiforme using mTOR inhibitors and the differentiating agent all-trans retinoic acid. Friedman MD; Jeevan DS; Tobias M; Murali R; Jhanwar-Uniyal M Oncol Rep; 2013 Oct; 30(4):1645-50. PubMed ID: 23877261 [TBL] [Abstract][Full Text] [Related]
12. Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression. Gambelli F; Sasdelli F; Manini I; Gambarana C; Oliveri G; Miracco C; Sorrentino V Cell Biol Int; 2012 Jan; 36(1):29-38. PubMed ID: 21916848 [TBL] [Abstract][Full Text] [Related]
13. HN1L promotes stem cell-like properties by regulating TGF-β signaling pathway through targeting FOXP2 in prostate cancer. Nong S; Wang Z; Wei Z; Ma L; Guan Y; Ni J Cell Biol Int; 2022 Jan; 46(1):83-95. PubMed ID: 34519127 [TBL] [Abstract][Full Text] [Related]
14. A molecular signature for the G6PC3/SLC37A2/SLC37A4 interactors in glioblastoma disease progression and in the acquisition of a brain cancer stem cell phenotype. Torabidastgerdooei S; Roy ME; Annabi B Front Endocrinol (Lausanne); 2023; 14():1265698. PubMed ID: 38034009 [TBL] [Abstract][Full Text] [Related]
15. Type 1 collagen as a potential niche component for CD133-positive glioblastoma cells. Motegi H; Kamoshima Y; Terasaka S; Kobayashi H; Houkin K Neuropathology; 2014 Aug; 34(4):378-85. PubMed ID: 24673436 [TBL] [Abstract][Full Text] [Related]
16. Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. Song WS; Yang YP; Huang CS; Lu KH; Liu WH; Wu WW; Lee YY; Lo WL; Lee SD; Chen YW; Huang PI; Chen MT J Chin Med Assoc; 2016 Oct; 79(10):538-45. PubMed ID: 27530866 [TBL] [Abstract][Full Text] [Related]
19. Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Daniele S; Zappelli E; Natali L; Martini C; Trincavelli ML Cell Death Dis; 2014 Nov; 5(11):e1539. PubMed ID: 25429616 [TBL] [Abstract][Full Text] [Related]
20. Blockade of TGF-β signaling by the TGFβR-I kinase inhibitor LY2109761 enhances radiation response and prolongs survival in glioblastoma. Zhang M; Kleber S; Röhrich M; Timke C; Han N; Tuettenberg J; Martin-Villalba A; Debus J; Peschke P; Wirkner U; Lahn M; Huber PE Cancer Res; 2011 Dec; 71(23):7155-67. PubMed ID: 22006998 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]