BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32448919)

  • 1. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus.
    Huang H; Cui T; Zhang L; Yang Q; Yang Y; Xie K; Fan C; Zhou Y
    Theor Appl Genet; 2020 Aug; 133(8):2401-2411. PubMed ID: 32448919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus.
    Okuzaki A; Ogawa T; Koizuka C; Kaneko K; Inaba M; Imamura J; Koizuka N
    Plant Physiol Biochem; 2018 Oct; 131():63-69. PubMed ID: 29753601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds.
    Peng Q; Hu Y; Wei R; Zhang Y; Guan C; Ruan Y; Liu C
    Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.
    Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y
    Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing.
    Jiang WZ; Henry IM; Lynagh PG; Comai L; Cahoon EB; Weeks DP
    Plant Biotechnol J; 2017 May; 15(5):648-657. PubMed ID: 27862889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing.
    Yuan M; Zhu J; Gong L; He L; Lee C; Han S; Chen C; He G
    BMC Biotechnol; 2019 Apr; 19(1):24. PubMed ID: 31035982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean.
    Do PT; Nguyen CX; Bui HT; Tran LTN; Stacey G; Gillman JD; Zhang ZJ; Stacey MG
    BMC Plant Biol; 2019 Jul; 19(1):311. PubMed ID: 31307375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.).
    Hu X; Sullivan-Gilbert M; Gupta M; Thompson SA
    Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Knockout of
    Xie T; Chen X; Guo T; Rong H; Chen Z; Sun Q; Batley J; Jiang J; Wang Y
    J Agric Food Chem; 2020 May; 68(20):5676-5690. PubMed ID: 32394708
    [No Abstract]   [Full Text] [Related]  

  • 10. A novel type of Brassica napus with higher stearic acid in seeds developed through genome editing of BnaSAD2 family.
    Huang H; Ahmar S; Samad RA; Qin P; Yan T; Zhao Q; Xie K; Zhang C; Fan C; Zhou Y
    Theor Appl Genet; 2023 Aug; 136(9):187. PubMed ID: 37572171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Mediated Gene Editing of
    Shi J; Ni X; Huang J; Fu Y; Wang T; Yu H; Zhang Y
    Genes (Basel); 2022 Sep; 13(10):. PubMed ID: 36292566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of high oleic/low linoleic rice by genome editing.
    Abe K; Araki E; Suzuki Y; Toki S; Saika H
    Plant Physiol Biochem; 2018 Oct; 131():58-62. PubMed ID: 29735369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils.
    Bai S; Engelen S; Denolf P; Wallis JG; Lynch K; Bengtsson JD; Van Thournout M; Haesendonckx B; Browse J
    Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted mutagenesis of EOD3 gene in Brassica napus L. regulates seed production.
    Khan MHU; Hu L; Zhu M; Zhai Y; Khan SU; Ahmar S; Amoo O; Zhang K; Fan C; Zhou Y
    J Cell Physiol; 2021 Mar; 236(3):1996-2007. PubMed ID: 32841372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and Analysis of
    Wu N; Lu Q; Wang P; Zhang Q; Zhang J; Qu J; Wang N
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32046096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of fatty acid composition in seed oil of rapeseed (Brassica napus L.) by mutated alleles of the FAD3 desaturase genes.
    Bocianowski J; Mikołajczyk K; Bartkowiak-Broda I
    J Appl Genet; 2012 Feb; 53(1):27-30. PubMed ID: 21912934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents.
    Jung JH; Kim H; Go YS; Lee SB; Hur CG; Kim HU; Suh MC
    Plant Cell Rep; 2011 Oct; 30(10):1881-92. PubMed ID: 21647637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Mediated Multiplex Genome Editing of the
    Sun Q; Lin L; Liu D; Wu D; Fang Y; Wu J; Wang Y
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30208656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2.
    Tian Y; Chen K; Li X; Zheng Y; Chen F
    BMC Plant Biol; 2020 May; 20(1):233. PubMed ID: 32450806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 mediated targeted disruption of FAD2-2 microsomal omega-6 desaturase in soybean (Glycine max.L).
    Al Amin N; Ahmad N; Wu N; Pu X; Ma T; Du Y; Bo X; Wang N; Sharif R; Wang P
    BMC Biotechnol; 2019 Jan; 19(1):9. PubMed ID: 30691438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.