These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32448962)

  • 61. Biosynthesis of polyhydroxyalkanoate by Gamma proteobacterium WD-3 from volatile fatty acids.
    Chen Z; Li Y; Wen Q; Zhang H
    Chemosphere; 2011 Feb; 82(8):1209-13. PubMed ID: 21129764
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha.
    Jung HR; Jeon JM; Yi DH; Song HS; Yang SY; Choi TR; Bhatia SK; Yoon JJ; Kim YG; Brigham CJ; Yang YH
    Int J Biol Macromol; 2019 Oct; 138():370-378. PubMed ID: 31310788
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge.
    Estévez-Alonso Á; Altamira-Algarra B; Arnau-Segarra C; van Loosdrecht MCM; Kleerebezem R; Werker A
    Bioresour Technol; 2022 Nov; 364():128035. PubMed ID: 36182016
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy.
    Zhao L; Zhang J; Xu Z; Cai S; Chen L; Cai T; Ji XM
    Bioresour Technol; 2022 Nov; 363():127939. PubMed ID: 36100183
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of polyhydroxyalkanoate (PHA) from excess activated sludge under various oxidation-reduction potentials (ORP) by using acetate and propionate as carbon sources.
    Hu WF; Sin SN; Chua H; Yu PH
    Appl Biochem Biotechnol; 2005; 121-124():289-301. PubMed ID: 15917607
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Visualization of Polyhydroxyalkanoate Accumulated in Waste Activated Sludge.
    Pei R; Vicente-Venegas G; Tomaszewska-Porada A; Van Loosdrecht MCM; Kleerebezem R; Werker A
    Environ Sci Technol; 2023 Aug; 57(30):11108-11121. PubMed ID: 37474498
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) production from engineered Ralstonia eutropha using synthetic and anaerobically digested food waste derived volatile fatty acids.
    Bhatia SK; Gurav R; Choi TR; Jung HR; Yang SY; Song HS; Jeon JM; Kim JS; Lee YK; Yang YH
    Int J Biol Macromol; 2019 Jul; 133():1-10. PubMed ID: 30986452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Carbon recovery from wastewater through bioconversion into biodegradable polymers.
    Valentino F; Morgan-Sagastume F; Campanari S; Villano M; Werker A; Majone M
    N Biotechnol; 2017 Jul; 37(Pt A):9-23. PubMed ID: 27288751
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Crude glycerol as feedstock for polyhydroxyalkanoates production by mixed microbial cultures.
    Moita R; Freches A; Lemos PC
    Water Res; 2014 Jul; 58():9-20. PubMed ID: 24731872
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Aerobic dynamic feeding as a strategy for in situ accumulation of polyhydroxyalkanoate in aerobic granules.
    Gobi K; Vadivelu VM
    Bioresour Technol; 2014 Jun; 161():441-5. PubMed ID: 24725384
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors.
    Lee WH; Loo CY; Nomura CT; Sudesh K
    Bioresour Technol; 2008 Oct; 99(15):6844-51. PubMed ID: 18325764
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and Gram-staining bacteria.
    Wang D; Chen Y; Zheng X; Li X; Feng L
    Environ Sci Technol; 2013 Mar; 47(6):2688-95. PubMed ID: 23398351
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.
    Sakai K; Miyake S; Iwama K; Inoue D; Soda S; Ike M
    J Appl Microbiol; 2015 Jan; 118(1):255-66. PubMed ID: 25362861
    [TBL] [Abstract][Full Text] [Related]  

  • 76. On the heterogeneous composition of bacterial polyhydroxyalkanoate terpolymers.
    Cavalheiro JMBT; Pollet E; Diogo HP; Cesário MT; Avérous L; de Almeida MCMD; da Fonseca MMR
    Bioresour Technol; 2013 Nov; 147():434-441. PubMed ID: 24007722
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925.
    Singh AK; Mallick N
    J Ind Microbiol Biotechnol; 2009 Mar; 36(3):347-54. PubMed ID: 19052786
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Thauera sp. Sel9, a new bacterial strain for polyhydroxyalkanoates production from volatile fatty acids.
    Andreolli M; Scerbacov V; Frison N; Zaccone C; Lampis S
    N Biotechnol; 2022 Dec; 72():71-79. PubMed ID: 36191843
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications.
    Luo K; Pang Y; Yang Q; Wang D; Li X; Lei M; Huang Q
    Environ Sci Pollut Res Int; 2019 May; 26(14):13984-13998. PubMed ID: 30900121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.