These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 32448962)
81. Crystallisation and fractionation of selected polyhydroxyalkanoates produced from mixed cultures. Laycock B; Arcos-Hernandez MV; Langford A; Pratt S; Werker A; Halley PJ; Lant PA N Biotechnol; 2014 Jun; 31(4):345-56. PubMed ID: 23707689 [TBL] [Abstract][Full Text] [Related]
82. Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha. Chakraborty P; Gibbons W; Muthukumarappan K J Appl Microbiol; 2009 Jun; 106(6):1996-2005. PubMed ID: 19320958 [TBL] [Abstract][Full Text] [Related]
83. Metabolic engineering of Pseudomonas putida for the production of various types of short-chain-length polyhydroxyalkanoates from levulinic acid. Cha D; Ha HS; Lee SK Bioresour Technol; 2020 Aug; 309():123332. PubMed ID: 32305015 [TBL] [Abstract][Full Text] [Related]
84. Polyhydroxyalkanoate biosynthesis by Hydrogenophaga pseudoflava DSM1034 from structurally unrelated carbon sources. Povolo S; Romanelli MG; Basaglia M; Ilieva VI; Corti A; Morelli A; Chiellini E; Casella S N Biotechnol; 2013 Sep; 30(6):629-34. PubMed ID: 23201074 [TBL] [Abstract][Full Text] [Related]
85. Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. Wen Q; Chen Z; Tian T; Chen W J Environ Sci (China); 2010; 22(10):1602-7. PubMed ID: 21235192 [TBL] [Abstract][Full Text] [Related]
86. Optimization of the culture conditions for production of Polyhydroxyalkanoate and its characterization from a new Bacillus cereus sp. BNPI-92 strain, isolated from plastic waste dumping yard. Mohammed S; Behera HT; Dekebo A; Ray L Int J Biol Macromol; 2020 Aug; 156():1064-1080. PubMed ID: 31751740 [TBL] [Abstract][Full Text] [Related]
87. Comparison of yields and properties of microbial polyhydroxyalkanoates generated from waste glycerol based substrates. Ntaikou I; Koumelis I; Tsitsilianis C; Parthenios J; Lyberatos G Int J Biol Macromol; 2018 Jun; 112():273-283. PubMed ID: 29391227 [TBL] [Abstract][Full Text] [Related]
88. Properties of degradable polyhydroxyalkanoates with different monomer compositions. Volova T; Kiselev E; Nemtsev I; Lukyanenko А; Sukovatyi A; Kuzmin A; Ryltseva G; Shishatskaya E Int J Biol Macromol; 2021 Jul; 182():98-114. PubMed ID: 33836189 [TBL] [Abstract][Full Text] [Related]
89. Integration of biopolymer production with process water treatment at a sugar factory. Anterrieu S; Quadri L; Geurkink B; Dinkla I; Bengtsson S; Arcos-Hernandez M; Alexandersson T; Morgan-Sagastume F; Karlsson A; Hjort M; Karabegovic L; Magnusson P; Johansson P; Christensson M; Werker A N Biotechnol; 2014 Jun; 31(4):308-23. PubMed ID: 24361532 [TBL] [Abstract][Full Text] [Related]
90. Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoate co-polymer composition. Ray S; Kalia VC Bioresour Technol; 2017 Jan; 224():743-747. PubMed ID: 27914782 [TBL] [Abstract][Full Text] [Related]
91. Biosynthesis of polyhydroxyalkanoate copolymers from methanol by Methylobacterium extorquens AM1 and the engineered strains under cobalt-deficient conditions. Orita I; Nishikawa K; Nakamura S; Fukui T Appl Microbiol Biotechnol; 2014 Apr; 98(8):3715-25. PubMed ID: 24430207 [TBL] [Abstract][Full Text] [Related]
92. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138 [TBL] [Abstract][Full Text] [Related]
93. Rapid quantification of intracellular PHA using infrared spectroscopy: an application in mixed cultures. Arcos-Hernandez MV; Gurieff N; Pratt S; Magnusson P; Werker A; Vargas A; Lant P J Biotechnol; 2010 Nov; 150(3):372-9. PubMed ID: 20851154 [TBL] [Abstract][Full Text] [Related]
94. Study of the Production of Poly(Hydroxybutyrate- Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906 [TBL] [Abstract][Full Text] [Related]
95. Biodegradable polymers from organic acids by using activated sludge enriched by aerobic periodic feeding. Dionisi D; Majone M; Papa V; Beccari M Biotechnol Bioeng; 2004 Mar; 85(6):569-79. PubMed ID: 14966798 [TBL] [Abstract][Full Text] [Related]
96. Biotechnological Production of Poly(3-Hydroxybutyrate- Kucera D; Novackova I; Pernicova I; Sedlacek P; Obruca S Bioengineering (Basel); 2019 Aug; 6(3):. PubMed ID: 31455023 [TBL] [Abstract][Full Text] [Related]
97. [Polyhydroxyalkanoate (PHA) synthesis by activated sludge microbes using acetic acid as carbon source]. Li W; Chen YG Huan Jing Ke Xue; 2009 Aug; 30(8):2366-70. PubMed ID: 19799302 [TBL] [Abstract][Full Text] [Related]
98. Renewable Alkenes from the Hydrothermal Treatment of Polyhydroxyalkanoates-Containing Sludge. Torri C; Weme TDO; Samorì C; Kiwan A; Brilman DWF Environ Sci Technol; 2017 Nov; 51(21):12683-12691. PubMed ID: 28991443 [TBL] [Abstract][Full Text] [Related]
99. Medium chain length polyhydroxyalkanoate (mcl-PHA) production from volatile fatty acids derived from the anaerobic digestion of grass. Cerrone F; Choudhari SK; Davis R; Cysneiros D; O'Flaherty V; Duane G; Casey E; Guzik MW; Kenny ST; Babu RP; O'Connor K Appl Microbiol Biotechnol; 2014 Jan; 98(2):611-20. PubMed ID: 24162086 [TBL] [Abstract][Full Text] [Related]
100. Adaptation of Cupriavidus necator to conditions favoring polyhydroxyalkanoate production. Cavalheiro JM; de Almeida MC; da Fonseca MM; de Carvalho CC J Biotechnol; 2012 Dec; 164(2):309-17. PubMed ID: 23376842 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]