These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 32449353)
21. Exciton Migration and Amplified Quenching on Two-Dimensional Metal-Organic Layers. Cao L; Lin Z; Shi W; Wang Z; Zhang C; Hu X; Wang C; Lin W J Am Chem Soc; 2017 May; 139(20):7020-7029. PubMed ID: 28467852 [TBL] [Abstract][Full Text] [Related]
22. Cooperative Sieving and Functionalization of Zr Metal-Organic Frameworks through Insertion and Post-Modification of Auxiliary Linkers. Zhang L; Yuan S; Fan W; Pang J; Li F; Guo B; Zhang P; Sun D; Zhou HC ACS Appl Mater Interfaces; 2019 Jun; 11(25):22390-22397. PubMed ID: 31039305 [TBL] [Abstract][Full Text] [Related]
23. Topology-Guided Stepwise Insertion of Three Secondary Linkers in Zirconium Metal-Organic Frameworks. Zhang X; Frey BL; Chen YS; Zhang J J Am Chem Soc; 2018 Jun; 140(24):7710-7715. PubMed ID: 29807423 [TBL] [Abstract][Full Text] [Related]
24. Assembled Exciton Dynamics in Porphyrin Metal-Organic Framework Nanofilms. Gu C; Zhang H; Yu J; Shen Q; Luo G; Chen X; Xue P; Wang Z; Hu J Nano Lett; 2021 Jan; 21(2):1102-1107. PubMed ID: 33404245 [TBL] [Abstract][Full Text] [Related]
25. Targeted Construction of Light-Harvesting Metal-Organic Frameworks Featuring Efficient Host-Guest Energy Transfer. Zhao X; Song X; Li Y; Chang Z; Chen L ACS Appl Mater Interfaces; 2018 Feb; 10(6):5633-5640. PubMed ID: 29350906 [TBL] [Abstract][Full Text] [Related]
26. Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks. Gutiérrez M; Sánchez F; Douhal A Chemistry; 2016 Sep; 22(37):13072-82. PubMed ID: 27404091 [TBL] [Abstract][Full Text] [Related]
27. Energy transfer dynamics in metal-organic frameworks. Kent CA; Mehl BP; Ma L; Papanikolas JM; Meyer TJ; Lin W J Am Chem Soc; 2010 Sep; 132(37):12767-9. PubMed ID: 20735124 [TBL] [Abstract][Full Text] [Related]
28. Lanthanide-Functionalized Metal-Organic Framework Hybrid Systems To Create Multiple Luminescent Centers for Chemical Sensing. Yan B Acc Chem Res; 2017 Nov; 50(11):2789-2798. PubMed ID: 28984437 [TBL] [Abstract][Full Text] [Related]
29. Linker Exchange via Migration along the Backbone in Metal-Organic Frameworks. Al Danaf N; Schrimpf W; Hirschle P; Lamb DC; Ji Z; Wuttke S J Am Chem Soc; 2021 Jul; 143(28):10541-10546. PubMed ID: 34228932 [TBL] [Abstract][Full Text] [Related]
30. Förster Energy Transport in Metal-Organic Frameworks Is Beyond Step-by-Step Hopping. Zhang Q; Zhang C; Cao L; Wang Z; An B; Lin Z; Huang R; Zhang Z; Wang C; Lin W J Am Chem Soc; 2016 Apr; 138(16):5308-15. PubMed ID: 27016183 [TBL] [Abstract][Full Text] [Related]
31. Hydrogen-Bonding Linkers Yield a Large-Pore, Non-Catenated, Metal-Organic Framework with pcu Topology. Yazdanparast MS; Day VW; Gadzikwa T Molecules; 2020 Feb; 25(3):. PubMed ID: 32041246 [TBL] [Abstract][Full Text] [Related]
32. Rigidifying fluorescent linkers by metal-organic framework formation for fluorescence blue shift and quantum yield enhancement. Wei Z; Gu ZY; Arvapally RK; Chen YP; McDougald RN; Ivy JF; Yakovenko AA; Feng D; Omary MA; Zhou HC J Am Chem Soc; 2014 Jun; 136(23):8269-76. PubMed ID: 24819882 [TBL] [Abstract][Full Text] [Related]
33. Boosting Transport Distances for Molecular Excitons within Photoexcited Metal-Organic Framework Films. Goswami S; Chen M; Wasielewski MR; Farha OK; Hupp JT ACS Appl Mater Interfaces; 2018 Oct; 10(40):34409-34417. PubMed ID: 30207679 [TBL] [Abstract][Full Text] [Related]
34. Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal-Organic Frameworks. Ren D; Xia HL; Zhou K; Wu S; Liu XY; Wang X; Li J Angew Chem Int Ed Engl; 2021 Nov; 60(47):25048-25054. PubMed ID: 34535955 [TBL] [Abstract][Full Text] [Related]
35. Photophysics of Azobenzene Constrained in a UiO Metal-Organic Framework: Effects of Pressure, Solvation and Dynamic Disorder. Sussardi A; Marshall RJ; Moggach SA; Jones AC; Forgan RS Chemistry; 2021 Oct; 27(60):14871-14875. PubMed ID: 34468054 [TBL] [Abstract][Full Text] [Related]
36. Understanding and Controlling the Dielectric Response of Metal-Organic Frameworks. Ryder MR; Donà L; Vitillo JG; Civalleri B Chempluschem; 2018 Apr; 83(4):308-316. PubMed ID: 31957274 [TBL] [Abstract][Full Text] [Related]
37. Dipole-Dependent Waveguiding in an Anisotropic Metal-Organic Framework. Wan R; Mankus D; Lee WS; Lytton-Jean AKR; Tisdale WA; Dincă M J Am Chem Soc; 2023 Aug; 145(34):19042-19048. PubMed ID: 37605330 [TBL] [Abstract][Full Text] [Related]
38. Linker Competition within a Metal-Organic Framework for Topological Insights. Wasson MC; Lyu J; Islamoglu T; Farha OK Inorg Chem; 2019 Jan; 58(2):1513-1517. PubMed ID: 30592621 [TBL] [Abstract][Full Text] [Related]
39. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Dhakshinamoorthy A; Asiri AM; García H Angew Chem Int Ed Engl; 2016 Apr; 55(18):5414-45. PubMed ID: 26970539 [TBL] [Abstract][Full Text] [Related]
40. Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes. Doria S; Sinclair TS; Klein ND; Bennett DIG; Chuang C; Freyria FS; Steiner CP; Foggi P; Nelson KA; Cao J; Aspuru-Guzik A; Lloyd S; Caram JR; Bawendi MG ACS Nano; 2018 May; 12(5):4556-4564. PubMed ID: 29701947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]