BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 32449444)

  • 1. Dynamics as a cause for the nanoscale organization of the genome.
    Barth R; Fourel G; Shaban HA
    Nucleus; 2020 Jan; 11(1):83-98. PubMed ID: 32449444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the dynamics and organization of chromatin domains by mathematical modeling.
    Shinkai S; Nozaki T; Maeshima K; Togashi Y
    Nucleus; 2017 Jul; 8(4):353-359. PubMed ID: 28406741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution microscopy approaches to nuclear nanostructure imaging.
    Cremer C; Szczurek A; Schock F; Gourram A; Birk U
    Methods; 2017 Jul; 123():11-32. PubMed ID: 28390838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systems Biology Approaches for Understanding Genome Architecture.
    Sewitz S; Lipkow K
    Methods Mol Biol; 2016; 1431():109-26. PubMed ID: 27283305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organization of fast and slow chromatin revealed by single-nucleosome dynamics.
    Ashwin SS; Nozaki T; Maeshima K; Sasai M
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19939-19944. PubMed ID: 31527274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin Domains: The Unit of Chromosome Organization.
    Dixon JR; Gorkin DU; Ren B
    Mol Cell; 2016 Jun; 62(5):668-80. PubMed ID: 27259200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring chromatin organization mechanisms through its dynamic properties.
    Bronshtein I; Kanter I; Kepten E; Lindner M; Berezin S; Shav-Tal Y; Garini Y
    Nucleus; 2016; 7(1):27-33. PubMed ID: 26854963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Organization of Chromatin Domains Revealed by Super-Resolution Live-Cell Imaging.
    Nozaki T; Imai R; Tanbo M; Nagashima R; Tamura S; Tani T; Joti Y; Tomita M; Hibino K; Kanemaki MT; Wendt KS; Okada Y; Nagai T; Maeshima K
    Mol Cell; 2017 Jul; 67(2):282-293.e7. PubMed ID: 28712725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct polymer physics principles govern chromatin dynamics in mouse and Drosophila topological domains.
    Ea V; Sexton T; Gostan T; Herviou L; Baudement MO; Zhang Y; Berlivet S; Le Lay-Taha MN; Cathala G; Lesne A; Victor JM; Fan Y; Cavalli G; Forné T
    BMC Genomics; 2015 Aug; 16(1):607. PubMed ID: 26271925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical mechanics of chromosomes: in vivo and in silico approaches reveal high-level organization and structure arise exclusively through mechanical feedback between loop extruders and chromatin substrate properties.
    He Y; Lawrimore J; Cook D; Van Gorder EE; De Larimat SC; Adalsteinsson D; Forest MG; Bloom K
    Nucleic Acids Res; 2020 Nov; 48(20):11284-11303. PubMed ID: 33080019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Super-resolution imaging reveals distinct chromatin folding for different epigenetic states.
    Boettiger AN; Bintu B; Moffitt JR; Wang S; Beliveau BJ; Fudenberg G; Imakaev M; Mirny LA; Wu CT; Zhuang X
    Nature; 2016 Jan; 529(7586):418-22. PubMed ID: 26760202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlative Conventional and Super-resolution Photoactivated Localization Microscopy (PALM) Imaging to Characterize Chromatin Structure and Dynamics in Live Mammalian Cells.
    Mehra D; Pucher EM
    Bio Protoc; 2023 Oct; 13(20):e4850. PubMed ID: 37900107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin dynamics governed by a set of nuclear structural proteins.
    Vivante A; Brozgol E; Bronshtein I; Levi V; Garini Y
    Genes Chromosomes Cancer; 2019 Jul; 58(7):437-451. PubMed ID: 30537111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs.
    Ohno M; Ando T; Priest DG; Kumar V; Yoshida Y; Taniguchi Y
    Cell; 2019 Jan; 176(3):520-534.e25. PubMed ID: 30661750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling chromatin structure and dynamics by live super-resolution imaging.
    Barth R; Bystricky K; Shaban HA
    Sci Adv; 2020 Jul; 6(27):. PubMed ID: 32937447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biophysics of Chromatin Dynamics.
    Fierz B; Poirier MG
    Annu Rev Biophys; 2019 May; 48():321-345. PubMed ID: 30883217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide transposon tagging reveals location-dependent effects on transcription and chromatin organization in Arabidopsis.
    Rosin FM; Watanabe N; Cacas JL; Kato N; Arroyo JM; Fang Y; May B; Vaughn M; Simorowski J; Ramu U; McCombie RW; Spector DL; Martienssen RA; Lam E
    Plant J; 2008 Aug; 55(3):514-25. PubMed ID: 18410481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Scale Imaging of the Dynamic Organization of Chromatin.
    García Fernández F; Huet S; Miné-Hattab J
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing chromatin folding coordinate and landscape with deep learning.
    Xie WJ; Qi Y; Zhang B
    PLoS Comput Biol; 2020 Sep; 16(9):e1008262. PubMed ID: 32986691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular basis and biological function of variability in spatial genome organization.
    Finn EH; Misteli T
    Science; 2019 Sep; 365(6457):. PubMed ID: 31488662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.