These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32449532)

  • 1. α-Amidoaldehydes as Substrates in Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of α-Amidoketones.
    Pal R; O'Brien SC; Willis MC
    Chemistry; 2020 Sep; 26(51):11710-11714. PubMed ID: 32449532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting Carbonyl Groups to Control Intermolecular Rhodium-Catalyzed Alkene and Alkyne Hydroacylation.
    Coxon TJ; Fernández M; Barwick-Silk J; McKay AI; Britton LE; Weller AS; Willis MC
    J Am Chem Soc; 2017 Jul; 139(29):10142-10149. PubMed ID: 28715214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodium-catalyzed intermolecular chelation controlled alkene and alkyne hydroacylation: synthetic scope of beta-S-substituted aldehyde substrates.
    Willis MC; Randell-Sly HE; Woodward RL; McNally SJ; Currie GS
    J Org Chem; 2006 Jul; 71(14):5291-7. PubMed ID: 16808518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Azine-N-oxides as effective controlling groups for Rh-catalysed intermolecular alkyne hydroacylation.
    Moseley DF; Kalepu J; Willis MC
    Chem Sci; 2021 Oct; 12(39):13068-13073. PubMed ID: 34745537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. O-substituted alkyl aldehydes for rhodium-catalyzed intermolecular alkyne hydroacylation: the utility of methylthiomethyl ethers.
    Parsons SR; Hooper JF; Willis MC
    Org Lett; 2011 Mar; 13(5):998-1000. PubMed ID: 21309521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chelation-controlled intermolecular alkene and alkyne hydroacylation: the utility of beta-thioacetal aldehydes.
    Willis MC; Randell-Sly HE; Woodward RL; Currie GS
    Org Lett; 2005 May; 7(11):2249-51. PubMed ID: 15901181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.
    Moxham GL; Randell-Sly H; Brayshaw SK; Weller AS; Willis MC
    Chemistry; 2008; 14(27):8383-97. PubMed ID: 18666296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tandem Alkyne Hydroacylation and Oxo-Michael Addition: Diastereoselective Synthesis of 2,3-Disubstituted Chroman-4-ones and Fluorinated Derivatives.
    Du XW; Stanley LM
    Org Lett; 2015 Jul; 17(13):3276-9. PubMed ID: 26098453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. α-Amino Aldehydes as Readily Available Chiral Aldehydes for Rh-Catalyzed Alkyne Hydroacylation.
    Hooper JF; Seo S; Truscott FR; Neuhaus JD; Willis MC
    J Am Chem Soc; 2016 Feb; 138(5):1630-4. PubMed ID: 26771104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Traceless chelation-controlled rhodium-catalyzed intermolecular alkene and alkyne hydroacylation.
    Hooper JF; Young RD; Weller AS; Willis MC
    Chemistry; 2013 Feb; 19(9):3125-30. PubMed ID: 23325542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.
    Davison RT; Kuker EL; Dong VM
    Acc Chem Res; 2021 Mar; 54(5):1236-1250. PubMed ID: 33533586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rh(DPEPhos)-Catalyzed Alkyne Hydroacylation Using β-Carbonyl-Substituted Aldehydes: Mechanistic Insight Leads to Low Catalyst Loadings that Enables Selective Catalysis on Gram-Scale.
    Barwick-Silk J; Hardy S; Willis MC; Weller AS
    J Am Chem Soc; 2018 Jun; 140(23):7347-7357. PubMed ID: 29763563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study.
    Meng Q; Shen W; Li M
    J Mol Model; 2012 Mar; 18(3):1229-39. PubMed ID: 21713414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate-directed hydroacylation: rhodium-catalyzed coupling of vinylphenols and nonchelating aldehydes.
    Murphy SK; Bruch A; Dong VM
    Angew Chem Int Ed Engl; 2014 Feb; 53(9):2455-9. PubMed ID: 24478146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rh(I)-catalyzed intermolecular hydroacylation: enantioselective cross-coupling of aldehydes and ketoamides.
    Kou KG; Le DN; Dong VM
    J Am Chem Soc; 2014 Jul; 136(26):9471-6. PubMed ID: 24937681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks.
    Blaszczyk SA; Glazier DA; Tang W
    Acc Chem Res; 2020 Jan; 53(1):231-243. PubMed ID: 31820914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrile-promoted Rh-catalyzed intermolecular hydroacylation of olefins with salicylaldehyde.
    Imai M; Tanaka M; Nagumo S; Kawahara N; Suemune H
    J Org Chem; 2007 Mar; 72(7):2543-6. PubMed ID: 17326687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodium(I)-Catalyzed Intermolecular Hydroacylation of α-Keto Amides and Isatins with Non-Chelating Aldehydes.
    Kou KG; Longobardi LE; Dong VM
    Adv Synth Catal; 2015 Jul; 357(10):2233-2237. PubMed ID: 27134619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic enantioselective intermolecular hydroacylation: rhodium-catalyzed combination of beta-S-aldehydes and 1,3-disubstituted allenes.
    Osborne JD; Randell-Sly HE; Currie GS; Cowley AR; Willis MC
    J Am Chem Soc; 2008 Dec; 130(51):17232-3. PubMed ID: 19053453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Traceless Rhodium-Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of β-Aryl Ketones.
    Bouisseau A; Gao M; Willis MC
    Chemistry; 2016 Oct; 22(44):15624-15628. PubMed ID: 27666437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.