BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32449720)

  • 1. Isolating Myofibrils from Skeletal Muscle Biopsies and Determining Contractile Function with a Nano-Newton Resolution Force Transducer.
    van de Locht M; de Winter JM; Rassier DE; Helmes MHB; Ottenheijm CAC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32449720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromechanical function of myofibrils isolated from skeletal and cardiac muscles of the zebrafish.
    Iorga B; Neacsu CD; Neiss WF; Wagener R; Paulsson M; Stehle R; Pfitzer G
    J Gen Physiol; 2011 Mar; 137(3):255-70. PubMed ID: 21357732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the kinetics of Ca2+-regulated contraction and relaxation from myofibril studies.
    Stehle R; Solzin J; Iorga B; Poggesi C
    Pflugers Arch; 2009 Jun; 458(2):337-57. PubMed ID: 19165498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of skeletal muscle myofibrils.
    Friedman AL; Goldman YE
    Biophys J; 1996 Nov; 71(5):2774-85. PubMed ID: 8913614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly and Maintenance of Myofibrils in Striated Muscle.
    Sanger JW; Wang J; Fan Y; White J; Mi-Mi L; Dube DK; Sanger JM; Pruyne D
    Handb Exp Pharmacol; 2017; 235():39-75. PubMed ID: 27832381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils.
    de Souza Leite F; Minozzo FC; Altman D; Rassier DE
    Proc Natl Acad Sci U S A; 2017 Aug; 114(33):8794-8799. PubMed ID: 28765372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contractile characteristics of sarcomeres arranged in series or mechanically isolated from myofibrils.
    Rassier DE; Pavlov I
    Adv Exp Med Biol; 2010; 682():123-40. PubMed ID: 20824523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Can We Learn from Single Sarcomere and Myofibril Preparations?
    Herzog W
    Front Physiol; 2022; 13():837611. PubMed ID: 35574477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcomere Length Nonuniformity and Force Regulation in Myofibrils and Sarcomeres.
    de Souza Leite F; Rassier DE
    Biophys J; 2020 Dec; 119(12):2372-2377. PubMed ID: 33217382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembling the myofibril: coordinating contractile cable construction with calcium.
    Ferrari MB; Podugu S; Eskew JD
    Cell Biochem Biophys; 2006; 45(3):317-37. PubMed ID: 16845177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium dependence of the apparent rate of force generation in single striated muscle myofibrils activated by rapid solution changes.
    Colomo F; Nencini S; Piroddi N; Poggesi C; Tesi C
    Adv Exp Med Biol; 1998; 453():373-81; discussion 381-2. PubMed ID: 9889849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unified myofibrillar matrix for force generation in muscle.
    Willingham TB; Kim Y; Lindberg E; Bleck CKE; Glancy B
    Nat Commun; 2020 Jul; 11(1):3722. PubMed ID: 32709902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational approach to quantitatively define sarcomere dimensions and arrangement in skeletal muscle.
    Cisterna B; Malatesta M; Zancanaro C; Boschi F
    Comput Methods Programs Biomed; 2021 Nov; 211():106437. PubMed ID: 34624632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3).
    Joureau B; de Winter JM; Conijn S; Bogaards SJP; Kovacevic I; Kalganov A; Persson M; Lindqvist J; Stienen GJM; Irving TC; Ma W; Yuen M; Clarke NF; Rassier DE; Malfatti E; Romero NB; Beggs AH; Ottenheijm CAC
    Ann Neurol; 2018 Feb; 83(2):269-282. PubMed ID: 29328520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of cross-bridge detachment in isometric force relaxation of skeletal and cardiac myofibrils.
    Belus A; Piroddi N; Tesi C
    J Muscle Res Cell Motil; 2003; 24(4-6):261-7. PubMed ID: 14620739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-length relation of skeletal muscles: from sarcomeres to myofibril.
    Hou M
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1797-1810. PubMed ID: 30047021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slow myosin heavy chain 1 is required for slow myofibril and muscle fibre growth but not for myofibril initiation.
    Hau HA; Kelu JJ; Ochala J; Hughes SM
    Dev Biol; 2023 Jul; 499():47-58. PubMed ID: 37121308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of calcium into the myofibrillar space in response to active shortening of striated muscle.
    Edman KAP; Caputo C
    Acta Physiol (Oxf); 2017 Oct; 221(2):142-148. PubMed ID: 28317338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between isometric force and myofibrillar MgATPase at short sarcomere length in skeletal and cardiac muscle and its relevance to the concept of activation heat.
    Stephenson DG
    Clin Exp Pharmacol Physiol; 2003 Aug; 30(8):570-5. PubMed ID: 12890181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractility of single myofibrils of rabbit skeletal muscle studied at various MgATP concentrations.
    Wakayama J; Yamada T
    Jpn J Physiol; 2000 Oct; 50(5):533-42. PubMed ID: 11120920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.