These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 32449837)
1. gem-Diol-Type Intermediate in the Activation of a Ketone on Sn-β Zeolite as Studied by Solid-State NMR Spectroscopy. Qi G; Chu Y; Wang Q; Wang X; Li Y; Trébosc J; Lafon O; Xu J; Deng F Angew Chem Int Ed Engl; 2020 Oct; 59(44):19532-19538. PubMed ID: 32449837 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts. Boronat M; Corma A; Renz M J Phys Chem B; 2006 Oct; 110(42):21168-74. PubMed ID: 17048941 [TBL] [Abstract][Full Text] [Related]
3. Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds. Rodríguez-Fernández A; Di Iorio JR; Paris C; Boronat M; Corma A; Román-Leshkov Y; Moliner M Chem Sci; 2020 Sep; 11(37):10225-10235. PubMed ID: 34094288 [TBL] [Abstract][Full Text] [Related]
4. Metal Active Sites and Their Catalytic Functions in Zeolites: Insights from Solid-State NMR Spectroscopy. Xu J; Wang Q; Deng F Acc Chem Res; 2019 Aug; 52(8):2179-2189. PubMed ID: 31063347 [TBL] [Abstract][Full Text] [Related]
5. Al-free Sn-Beta zeolite as a catalyst for the selective reduction of carbonyl compounds (Meerwein-Ponndorf-Verley reaction). Corma A; Domine ME; Nemeth L; Valencia S J Am Chem Soc; 2002 Apr; 124(13):3194-5. PubMed ID: 11916388 [TBL] [Abstract][Full Text] [Related]
6. Identification of Active and Spectator Sn Sites in Sn-β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis. Hammond C; Padovan D; Al-Nayili A; Wells PP; Gibson EK; Dimitratos N ChemCatChem; 2015 Oct; 7(20):3322-3331. PubMed ID: 26583051 [TBL] [Abstract][Full Text] [Related]
7. Unveiling the Brønsted acid mechanism for Meerwein-Ponndorf-Verley reduction in methanol conversion over ZSM-5. Cai W; Wang C; Chu Y; Hu M; Wang Q; Xu J; Deng F Nat Commun; 2024 Oct; 15(1):8736. PubMed ID: 39384793 [TBL] [Abstract][Full Text] [Related]
8. Isomorphic Insertion of Ce(III)/Ce(IV) Centers into Layered Double Hydroxide as a Heterogeneous Multifunctional Catalyst for Efficient Meerwein-Ponndorf-Verley Reduction. Varga G; Nguyen TT; Wang J; Tian D; Zhang R; Li L; Xu ZP ACS Appl Mater Interfaces; 2024 Mar; 16(9):11453-11466. PubMed ID: 38404195 [TBL] [Abstract][Full Text] [Related]
9. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H-ZSM-5 Zeolite with Solid-State NMR Spectroscopy. Hu M; Wang C; Chu Y; Wang Q; Li S; Xu J; Deng F Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202207400. PubMed ID: 36001462 [TBL] [Abstract][Full Text] [Related]
11. Probing the active sites for methane activation on Ga/ZSM-5 zeolites with solid-state NMR spectroscopy. Zhao X; Chu Y; Qi G; Wang Q; Gao W; Wang X; Li S; Xu J; Deng F Chem Commun (Camb); 2020 Oct; 56(80):12029-12032. PubMed ID: 32901633 [TBL] [Abstract][Full Text] [Related]
12. Lewis Acid Zeolites for Biomass Conversion: Perspectives and Challenges on Reactivity, Synthesis, and Stability. Luo HY; Lewis JD; Román-Leshkov Y Annu Rev Chem Biomol Eng; 2016 Jun; 7():663-92. PubMed ID: 27146555 [TBL] [Abstract][Full Text] [Related]
13. Methane Activation on H-ZSM-5 Zeolite with Low Copper Loading. The Nature of Active Sites and Intermediates Identified with the Combination of Spectroscopic Methods. Gabrienko AA; Yashnik SA; Kolganov AA; Sheveleva AM; Arzumanov SS; Fedin MV; Tuna F; Stepanov AG Inorg Chem; 2020 Feb; 59(3):2037-2050. PubMed ID: 31971794 [TBL] [Abstract][Full Text] [Related]
14. A multisite molecular mechanism for Baeyer-Villiger oxidations on solid catalysts using environmentally friendly H2O2 as oxidant. Boronat M; Corma A; Renz M; Sastre G; Viruela PM Chemistry; 2005 Nov; 11(23):6905-15. PubMed ID: 16163761 [TBL] [Abstract][Full Text] [Related]
15. The mechanism of glucose isomerization to fructose over Sn-BEA zeolite: a periodic density functional theory study. Yang G; Pidko EA; Hensen EJ ChemSusChem; 2013 Sep; 6(9):1688-96. PubMed ID: 23943294 [TBL] [Abstract][Full Text] [Related]
16. Computational Study of the Solid-State Incorporation of Sn(II) Acetate into Zeolite β. Beynon OT; Owens A; Tarantino G; Hammond C; Logsdail AJ J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19072-19087. PubMed ID: 37791098 [TBL] [Abstract][Full Text] [Related]
17. Snβ-zeolite catalyzed oxido-reduction cascade chemistry with biomass-derived molecules. Dijkmans J; Schutyser W; Dusselier M; Sels BF Chem Commun (Camb); 2016 May; 52(40):6712-5. PubMed ID: 27117050 [TBL] [Abstract][Full Text] [Related]
18. Structure of framework aluminum Lewis sites and perturbed aluminum atoms in zeolites as determined by 27Al{1H} REDOR (3Q) MAS NMR spectroscopy and DFT/molecular mechanics. Brus J; Kobera L; Schoefberger W; Urbanová M; Klein P; Sazama P; Tabor E; Sklenak S; Fishchuk AV; Dědeček J Angew Chem Int Ed Engl; 2015 Jan; 54(2):541-5. PubMed ID: 25393612 [TBL] [Abstract][Full Text] [Related]
19. Ketone-alcohol hydrogen-transfer equilibria: is the biooxidation of halohydrins blocked? Bisogno FR; García-Urdiales E; Valdés H; Lavandera I; Kroutil W; Suárez D; Gotor V Chemistry; 2010 Sep; 16(36):11012-9. PubMed ID: 20803580 [TBL] [Abstract][Full Text] [Related]
20. Phenol Tautomerization Catalyzed by Acid-Base Pairs in Lewis Acidic Beta Zeolites: A Computational Study. Deepankeaw N; Maihom T; Probst M; Prasertsab A; Homlamai K; Sittiwong J; Limtrakul J Chemphyschem; 2019 Aug; 20(16):2122-2126. PubMed ID: 31237987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]