BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 32449878)

  • 1. Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies.
    Bolisetty P; Tremml G; Xu S; Khetan A
    MAbs; 2020; 12(1):1763727. PubMed ID: 32449878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A strategy to accelerate protein production from a pool of clones in Chinese hamster ovary cells for toxicology studies.
    Hu Z; Hsu W; Pynn A; Ng D; Quicho D; Adem Y; Kwong Z; Mauger B; Joly J; Snedecor B; Laird MW; Andersen DC; Shen A
    Biotechnol Prog; 2017 Nov; 33(6):1449-1455. PubMed ID: 28371489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging a CHO cell line toolkit to accelerate biotherapeutics into the clinic.
    Wright C; Alves C; Kshirsagar R; Pieracci J; Estes S
    Biotechnol Prog; 2017 Nov; 33(6):1468-1475. PubMed ID: 28842948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of therapeutic antibody candidates derived from mini-pool and clonal cell lines.
    Fan L; Rizzi G; Bierilo K; Tian J; Yee JC; Russell R; Das TK
    Biotechnol Prog; 2017 Nov; 33(6):1456-1462. PubMed ID: 28393481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategic deployment of CHO expression platforms to deliver Pfizer's Monoclonal Antibody Portfolio.
    Scarcelli JJ; Shang TQ; Iskra T; Allen MJ; Zhang L
    Biotechnol Prog; 2017 Nov; 33(6):1463-1467. PubMed ID: 28480558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerating patient access to novel biologics using stable pool-derived product for non-clinical studies and single clone-derived product for clinical studies.
    Munro TP; Le K; Le H; Zhang L; Stevens J; Soice N; Benchaar SA; Hong RW; Goudar CT
    Biotechnol Prog; 2017 Nov; 33(6):1476-1482. PubMed ID: 29055113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilizing targeted integration CHO pools to potentially accelerate the GMP manufacturing of monoclonal and bispecific antibodies.
    Barnard GC; Zhou M; Shen A; Yuk IH; Laird MW
    Biotechnol Prog; 2024; 40(1):e3399. PubMed ID: 37874920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards maximum acceleration of monoclonal antibody development: Leveraging transposase-mediated cell line generation to enable GMP manufacturing within 3 months using a stable pool.
    Schmieder V; Fieder J; Drerup R; Gutierrez EA; Guelch C; Stolzenberger J; Stumbaum M; Mueller VS; Higel F; Bergbauer M; Bornhoefft K; Wittner M; Gronemeyer P; Braig C; Huber M; Reisenauer-Schaupp A; Mueller MM; Schuette M; Puengel S; Lindner B; Schmidt M; Schulz P; Fischer S
    J Biotechnol; 2022 Apr; 349():53-64. PubMed ID: 35341894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A CHO stable pool production platform for rapid clinical development of trimeric SARS-CoV-2 spike subunit vaccine antigens.
    Joubert S; Stuible M; Lord-Dufour S; Lamoureux L; Vaillancourt F; Perret S; Ouimet M; Pelletier A; Bisson L; Mahimkar R; Pham PL; L Ecuyer-Coelho H; Roy M; Voyer R; Baardsnes J; Sauvageau J; St-Michael F; Robotham A; Kelly J; Acel A; Schrag JD; El Bakkouri M; Durocher Y
    Biotechnol Bioeng; 2023 Jul; 120(7):1746-1761. PubMed ID: 36987713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells.
    Naderi F; Hashemi M; Bayat H; Mohammadian O; Pourmaleki E; Etemadzadeh MH; Rahimpour A
    Monoclon Antib Immunodiagn Immunother; 2018 Nov; 37(5):200-206. PubMed ID: 30362930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.
    Nakamura T; Omasa T
    J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quality comparability assessment of a SARS-CoV-2-neutralizing antibody across transient, mini-pool-derived and single-clone CHO cells.
    Xu G; Yu C; Wang W; Fu C; Liu H; Zhu Y; Li Y; Liu C; Fu Z; Wu G; Li M; Guo S; Yu X; Du J; Yang Y; Duan M; Cui Y; Feng H; Wang L
    MAbs; 2022; 14(1):2005507. PubMed ID: 34923915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells.
    Poulain A; Mullick A; Massie B; Durocher Y
    J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions.
    Srirangan K; Loignon M; Durocher Y
    Crit Rev Biotechnol; 2020 Sep; 40(6):833-851. PubMed ID: 32456474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lengthening of high-yield production levels of monoclonal antibody-producing Chinese hamster ovary cells by downregulation of breast cancer 1.
    Matsuyama R; Yamano N; Kawamura N; Omasa T
    J Biosci Bioeng; 2017 Mar; 123(3):382-389. PubMed ID: 27742176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins.
    Dorai H; Corisdeo S; Ellis D; Kinney C; Chomo M; Hawley-Nelson P; Moore G; Betenbaugh MJ; Ganguly S
    Biotechnol Bioeng; 2012 Apr; 109(4):1016-30. PubMed ID: 22068683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.
    Popp O; Müller D; Didzus K; Paul W; Lipsmeier F; Kirchner F; Niklas J; Mauch K; Beaucamp N
    Biotechnol Bioeng; 2016 Sep; 113(9):2005-19. PubMed ID: 26913695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines.
    Ritter A; Voedisch B; Wienberg J; Wilms B; Geisse S; Jostock T; Laux H
    Biotechnol Bioeng; 2016 May; 113(5):1084-93. PubMed ID: 26523402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new CHO (Chinese hamster ovary)-derived cell line expressing anti-TNFα monoclonal antibody with biosimilar potential.
    Luchese MD; Lopes Dos Santos M; Garbuio A; Targino RC; Mansueli CP; Tsuruta LR; Quintilio W; Moro AM
    Immunol Res; 2018 Jun; 66(3):392-405. PubMed ID: 29855993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.
    Fan L; Kadura I; Krebs LE; Hatfield CC; Shaw MM; Frye CC
    Biotechnol Bioeng; 2012 Apr; 109(4):1007-15. PubMed ID: 22068567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.