These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 32449989)

  • 1. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts.
    Prasad P; Selvan D; Chakraborty S
    Chemistry; 2020 Oct; 26(55):12494-12509. PubMed ID: 32449989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From enzyme maturation to synthetic chemistry: the case of hydrogenases.
    Artero V; Berggren G; Atta M; Caserta G; Roy S; Pecqueur L; Fontecave M
    Acc Chem Res; 2015 Aug; 48(8):2380-7. PubMed ID: 26165393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversifying Metal-Ligand Cooperative Catalysis in Semi-Synthetic [Mn]-Hydrogenases.
    Pan HJ; Huang G; Wodrich MD; Tirani FF; Ataka K; Shima S; Hu X
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13350-13357. PubMed ID: 33635597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen Evolution from Aqueous Solutions Mediated by a Heterogenized [NiFe]-Hydrogenase Model: Low pH Enables Catalysis through an Enzyme-Relevant Mechanism.
    Ahmed ME; Chattopadhyay S; Wang L; Brazzolotto D; Pramanik D; Aldakov D; Fize J; Morozan A; Gennari M; Duboc C; Dey A; Artero V
    Angew Chem Int Ed Engl; 2018 Dec; 57(49):16001-16004. PubMed ID: 30307683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation.
    Rakowski DuBois M; DuBois DL
    Acc Chem Res; 2009 Dec; 42(12):1974-82. PubMed ID: 19645445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake.
    Caserta G; Roy S; Atta M; Artero V; Fontecave M
    Curr Opin Chem Biol; 2015 Apr; 25():36-47. PubMed ID: 25553541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogenases and H(+)-reduction in primary energy conservation.
    Vignais PM
    Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts.
    Onoda A; Hayashi T
    Curr Opin Chem Biol; 2015 Apr; 25():133-40. PubMed ID: 25617828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond the active site: the impact of the outer coordination sphere on electrocatalysts for hydrogen production and oxidation.
    Ginovska-Pangovska B; Dutta A; Reback ML; Linehan JC; Shaw WJ
    Acc Chem Res; 2014 Aug; 47(8):2621-30. PubMed ID: 24945095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic Metallopolymers from [2Fe-2S] Clusters: Artificial Metalloenzymes for Hydrogen Production.
    Karayilan M; Brezinski WP; Clary KE; Lichtenberger DL; Glass RS; Pyun J
    Angew Chem Int Ed Engl; 2019 Jun; 58(23):7537-7550. PubMed ID: 30628136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [FeFe]-Hydrogenases: recent developments and future perspectives.
    Wittkamp F; Senger M; Stripp ST; Apfel UP
    Chem Commun (Camb); 2018 Jun; 54(47):5934-5942. PubMed ID: 29726568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.
    Armstrong FA; Albracht SP
    Philos Trans A Math Phys Eng Sci; 2005 Apr; 363(1829):937-54; discussion 1035-40. PubMed ID: 15991402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymes as modular catalysts for redox half-reactions in H2-powered chemical synthesis: from biology to technology.
    Reeve HA; Ash PA; Park H; Huang A; Posidias M; Tomlinson C; Lenz O; Vincent KA
    Biochem J; 2017 Jan; 474(2):215-230. PubMed ID: 28062838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semisynthetic and Biomolecular Hydrogen Evolution Catalysts.
    Kandemir B; Chakraborty S; Guo Y; Bren KL
    Inorg Chem; 2016 Jan; 55(2):467-77. PubMed ID: 26671416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [NiFeSe]-hydrogenase chemistry.
    Wombwell C; Caputo CA; Reisner E
    Acc Chem Res; 2015 Nov; 48(11):2858-65. PubMed ID: 26488197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.
    Lenz O; Ludwig M; Schubert T; Bürstel I; Ganskow S; Goris T; Schwarze A; Friedrich B
    Chemphyschem; 2010 Apr; 11(6):1107-19. PubMed ID: 20186906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding and harnessing hydrogenases, biological dihydrogen catalysts.
    Parkin A
    Met Ions Life Sci; 2014; 14():99-124. PubMed ID: 25416392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.