BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32450328)

  • 21. Enzymatic synthesis of kraft lignin-acrylate copolymers using an alkaline tolerant laccase.
    Arefmanesh M; Vuong TV; Nikafshar S; Wallmo H; Nejad M; Master ER
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):2969-2979. PubMed ID: 35449361
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanistic insights into laccase-mediated functionalisation of lignocellulose material.
    Nyanhongo G; Kudanga T; Prasetyo E; Guebitz G
    Biotechnol Genet Eng Rev; 2010; 27():305-30. PubMed ID: 21415903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood.
    Palonen H; Viikari L
    Biotechnol Bioeng; 2004 Jun; 86(5):550-7. PubMed ID: 15129438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of primary hydroxyl groups in chitooligomer by a laccase-TEMPO system and physico-chemical characterisation of oxidation products.
    Pei J; Yin Y; Shen Z; Bu X; Zhang F
    Carbohydr Polym; 2016 Jan; 135():234-8. PubMed ID: 26453873
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancement of Interface between Lignocellulosic Fibers and Polypropylene Matrix via the Structure Alteration of Lignin at Elevated Temperatures.
    Dong Z; Li N; Dong A; Ma B; Yu C; Chu T; Liu Q
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation.
    Khan F
    Macromol Biosci; 2005 Jan; 5(1):78-89. PubMed ID: 15635719
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges.
    Chiulan I; Panaitescu DM; Radu ER; Vizireanu S; Sătulu V; Biţă B; Gabor RA; Nicolae CA; Raduly M; Rădiţoiu V
    Carbohydr Polym; 2021 Nov; 272():118458. PubMed ID: 34420718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Different proportions of laccase isoenzymes produced by submerged cultures of Trametes versicolor grown on lignocellulosic wastes.
    Moldes D; Lorenzo M; Sanromán MA
    Biotechnol Lett; 2004 Feb; 26(4):327-30. PubMed ID: 15055770
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Obtainment of chelating agents through the enzymatic oxidation of lignins by phenol oxidase.
    Calabria GM; Gonçalves AR
    Appl Biochem Biotechnol; 2006; 129-132():320-5. PubMed ID: 16915650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polyvinylamine-graft-TEMPO adsorbs onto, oxidizes, and covalently bonds to wet cellulose.
    Pelton R; Ren P; Liu J; Mijolovic D
    Biomacromolecules; 2011 Apr; 12(4):942-8. PubMed ID: 21391712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulose oxidation by Laccase-TEMPO treatments.
    Quintana E; Roncero MB; Vidal T; Valls C
    Carbohydr Polym; 2017 Feb; 157():1488-1495. PubMed ID: 27987860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rate-Limited Reaction in TEMPO/Laccase/O
    Jiang J; Chen H; Yu J; Liu L; Fan Y; Saito T; Isogai A
    Macromol Rapid Commun; 2021 Feb; 42(3):e2000501. PubMed ID: 33225568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosorbent with superhydrophobicity and superoleophilicity for spilled oil removal.
    Peng D; Li H; Li WJ; Zheng L
    Ecotoxicol Environ Saf; 2021 Feb; 209():111803. PubMed ID: 33360216
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased water resistance of CTMP fibers by oat (Avena sativa L.) husk lignin.
    Sipponen MH; Pastinen OA; Strengell R; Hyötyläinen JM; Heiskanen IT; Laakso S
    Biomacromolecules; 2010 Dec; 11(12):3511-8. PubMed ID: 20973545
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improving properties of silk sericin membranes via enzymatic oxidation with laccase and TEMPO.
    Zhang Q; Cui L; Wang P; Deng C; Wang Q; Fan X
    Biotechnol Appl Biochem; 2018 May; 65(3):372-380. PubMed ID: 28881487
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering Ligninolytic Consortium for Bioconversion of Lignocelluloses to Ethanol and Chemicals.
    Bilal M; Nawaz MZ; Iqbal HMN; Hou J; Mahboob S; Al-Ghanim KA; Cheng H
    Protein Pept Lett; 2018; 25(2):108-119. PubMed ID: 29359652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermoalkaliphilic laccase treatment for enhanced production of high-value benzaldehyde chemicals from lignin.
    Yang Y; Song WY; Hur HG; Kim TY; Ghatge S
    Int J Biol Macromol; 2019 Mar; 124():200-208. PubMed ID: 30448497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose.
    Yang Q; Pan X
    Biotechnol Bioeng; 2016 Jun; 113(6):1213-24. PubMed ID: 26666388
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.