These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32450328)

  • 41. Laccase mediator systems for eco-friendly production of medium-density fiberboard (MDF) on a pilot scale: physicochemical analysis of the reaction mechanism.
    Euring M; Rühl M; Ritter N; Kües U; Kharazipour A
    Biotechnol J; 2011 Oct; 6(10):1253-61. PubMed ID: 22081820
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber.
    Khan F
    Biomacromolecules; 2004; 5(3):1078-88. PubMed ID: 15132702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Removal of monomer delignification products by laccase from Trametes versicolor.
    Kolb M; Sieber V; Amann M; Faulstich M; Schieder D
    Bioresour Technol; 2012 Jan; 104():298-304. PubMed ID: 22176974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose.
    Rohaizu R; Wanrosli WD
    Ultrason Sonochem; 2017 Jan; 34():631-639. PubMed ID: 27773290
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lignocellulosic fibres surface interactions in enzymatic reaction using data-mining.
    Morin S; Lecart B; Lang M; Richel A
    Carbohydr Polym; 2021 Feb; 254():117412. PubMed ID: 33357898
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Oxidation of galactomannan by laccase plus TEMPO yields an elastic gel.
    Lavazza M; Formantici C; Langella V; Monti D; Pfeiffer U; Galante YM
    J Biotechnol; 2011 Nov; 156(2):108-16. PubMed ID: 21903143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Laccase from Pycnoporus cinnabarinus and phenolic compounds: can the efficiency of an enzyme mediator for delignifying kenaf pulp be predicted?
    Andreu G; Vidal T
    Bioresour Technol; 2013 Mar; 131():536-40. PubMed ID: 23403063
    [TBL] [Abstract][Full Text] [Related]  

  • 48. TEMPO electromediated oxidation of some polysaccharides including regenerated cellulose fiber.
    Isogai T; Saito T; Isogai A
    Biomacromolecules; 2010 Jun; 11(6):1593-9. PubMed ID: 20469944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A
    Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A step towards tuning the jute fiber structure and properties by employing sodium periodate oxidation and coating with alginate.
    Ivanovska A; Milošević M; Lađarević J; Jankoska M; Matić T; Svirčev Z; Kostić M
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128668. PubMed ID: 38092097
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of surface enzyme treatments using laccase and a hydrophobic compound to paper-based media.
    Cusola O; Valls C; Vidal T; Roncero MB
    Bioresour Technol; 2013 Mar; 131():521-6. PubMed ID: 23453234
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of TEMPO-mediated oxidation on the lignin of thermomechanical pulp.
    Ma P; Fu S; Zhai H; Law K; Daneault C
    Bioresour Technol; 2012 Aug; 118():607-10. PubMed ID: 22704831
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Progress in natural laccase mediators from lignocelluloses].
    Qiu W; Chen H
    Sheng Wu Gong Cheng Xue Bao; 2014 May; 30(5):726-33. PubMed ID: 25118396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications.
    Sitarz AK; Mikkelsen JD; Meyer AS
    Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Use of a NICA-Donnan approach for analysis of proton binding to a lignocellulosic substrate extracted from wheat bran.
    Bouanda J; Dupont L; Dumonceau J; Aplincourt M
    Anal Bioanal Chem; 2002 Jun; 373(3):174-82. PubMed ID: 12043021
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new procedure for the hydrophobization of cellulose fibre using laccase and a hydrophobic phenolic compound.
    Garcia-Ubasart J; Colom JF; Vila C; Gómez Hernández N; Blanca Roncero M; Vidal T
    Bioresour Technol; 2012 May; 112():341-4. PubMed ID: 22440576
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Spectra analysis of lignin small molecular guaiacyl coniferyl alcohol biological modification treated by laccase].
    Liu HT; Pei JC; Hu HR; Pei Y
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1469-73. PubMed ID: 20707131
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers.
    Cao X; Ding B; Yu J; Al-Deyab SS
    Carbohydr Polym; 2012 Oct; 90(2):1075-80. PubMed ID: 22840042
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the hydrophobic and acoustic properties of bio windmill palm materials.
    Chen C; Wang Z; Zhang Y; Bi M; Nie K; Wang G
    Sci Rep; 2018 Sep; 8(1):13419. PubMed ID: 30194391
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous extraction of lignin and cellulose nanofibrils from waste jute bags using one pot pre-treatment.
    Ahuja D; Kaushik A; Singh M
    Int J Biol Macromol; 2018 Feb; 107(Pt A):1294-1301. PubMed ID: 28964841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.