These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 32450689)

  • 1. Enantioselective Hydroxylation of Benzylic C(sp
    Serrano-Plana J; Rumo C; Rebelein JG; Peterson RL; Barnet M; Ward TR
    J Am Chem Soc; 2020 Jun; 142(24):10617-10623. PubMed ID: 32450689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
    Ward TR
    Acc Chem Res; 2011 Jan; 44(1):47-57. PubMed ID: 20949947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: fine tuning the selectivity by saturation mutagenesis of the host protein.
    Letondor C; Pordea A; Humbert N; Ivanova A; Mazurek S; Novic M; Ward TR
    J Am Chem Soc; 2006 Jun; 128(25):8320-8. PubMed ID: 16787096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.
    Ward TR
    Chemistry; 2005 Jun; 11(13):3798-804. PubMed ID: 15761912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
    Letondor C; Humbert N; Ward TR
    Proc Natl Acad Sci U S A; 2005 Mar; 102(13):4683-7. PubMed ID: 15772162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial metalloenzyme for enantioselective sulfoxidation based on vanadyl-loaded streptavidin.
    Pordea A; Creus M; Panek J; Duboc C; Mathis D; Novic M; Ward TR
    J Am Chem Soc; 2008 Jun; 130(25):8085-8. PubMed ID: 18507383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
    Wang W; Tachibana R; Zou Z; Chen D; Zhang X; Lau K; Pojer F; Ward TR; Hu X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311896. PubMed ID: 37671593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers.
    Skander M; Malan C; Ivanova A; Ward TR
    Chem Commun (Camb); 2005 Oct; (38):4815-7. PubMed ID: 16193124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
    Collot J; Gradinaru J; Humbert N; Skander M; Zocchi A; Ward TR
    J Am Chem Soc; 2003 Jul; 125(30):9030-1. PubMed ID: 15369356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cell-penetrating artificial metalloenzyme regulates a gene switch in a designer mammalian cell.
    Okamoto Y; Kojima R; Schwizer F; Bartolami E; Heinisch T; Matile S; Fussenegger M; Ward TR
    Nat Commun; 2018 May; 9(1):1943. PubMed ID: 29769518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C(
    Yu K; Zou Z; Igareta NV; Tachibana R; Bechter J; Köhler V; Chen D; Ward TR
    J Am Chem Soc; 2023 Aug; 145(30):16621-16629. PubMed ID: 37471698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Artificial [Fe
    Waser V; Mukherjee M; Tachibana R; Igareta NV; Ward TR
    J Am Chem Soc; 2023 Jul; 145(27):14823-14830. PubMed ID: 37387617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rationalization of a Streptavidin Based Enantioselective Artificial Suzukiase: An Integrative Computational Approach.
    Tiessler-Sala L; Maréchal JD; Lledós A
    Chemistry; 2024 Jul; 30(39):e202401165. PubMed ID: 38752552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial nickel chlorinase based on the biotin-streptavidin technology.
    Yu K; Zhang K; Jakob RP; Maier T; Ward TR
    Chem Commun (Camb); 2024 Feb; 60(14):1944-1947. PubMed ID: 38277163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of p450pyr hydroxylase for the highly regio- and enantioselective subterminal hydroxylation of alkanes.
    Yang Y; Liu J; Li Z
    Angew Chem Int Ed Engl; 2014 Mar; 53(12):3120-4. PubMed ID: 24554642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.