These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32450689)

  • 21. Artificial Metalloproteins with Dinuclear Iron-Hydroxido Centers.
    Miller KR; Biswas S; Jasniewski A; Follmer AH; Biswas A; Albert T; Sabuncu S; Bominaar EL; Hendrich MP; Moënne-Loccoz P; Borovik AS
    J Am Chem Soc; 2021 Feb; 143(5):2384-2393. PubMed ID: 33528256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inversion of enantioselectivity of a mononuclear non-heme iron(II)-dependent hydroxylase by tuning the interplay of metal-center geometry and protein structure.
    Pratter SM; Konstantinovics C; Di Giuro CM; Leitner E; Kumar D; de Visser SP; Grogan G; Straganz GD
    Angew Chem Int Ed Engl; 2013 Sep; 52(37):9677-81. PubMed ID: 23881738
    [No Abstract]   [Full Text] [Related]  

  • 23. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases.
    Olsson E; Martinez A; Teigen K; Jensen VR
    Chemistry; 2011 Mar; 17(13):3746-58. PubMed ID: 21351297
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution structure of streptavidin in complex with a novel high affinity peptide tag mimicking the biotin binding motif.
    Perbandt M; Bruns O; Vallazza M; Lamla T; Betzel Ch; Erdmann VA
    Proteins; 2007 Jun; 67(4):1147-53. PubMed ID: 17377987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct force measurements of the streptavidin-biotin interaction.
    Wong J; Chilkoti A; Moy VT
    Biomol Eng; 1999 Dec; 16(1-4):45-55. PubMed ID: 10796984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-heme Fe(IV)-oxo intermediates.
    Krebs C; Galonić Fujimori D; Walsh CT; Bollinger JM
    Acc Chem Res; 2007 Jul; 40(7):484-92. PubMed ID: 17542550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3.
    Peters MW; Meinhold P; Glieder A; Arnold FH
    J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR
    Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering monomeric streptavidin and its ligands with infinite affinity in binding but reversibility in interaction.
    Wu SC; Ng KK; Wong SL
    Proteins; 2009 Nov; 77(2):404-12. PubMed ID: 19425108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Binding of biotin to streptavidin stabilizes intersubunit salt bridges between Asp61 and His87 at low pH.
    Katz BA
    J Mol Biol; 1997 Dec; 274(5):776-800. PubMed ID: 9405158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand binding energy and catalytic efficiency from improved packing within receptors and enzymes.
    Williams DH; Stephens E; Zhou M
    J Mol Biol; 2003 May; 329(2):389-99. PubMed ID: 12758085
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Revisiting the streptavidin-biotin binding by using an aptamer and displacement isothermal calorimetry titration.
    Kuo TC; Tsai CW; Lee PC; Chen WY
    J Mol Recognit; 2015 Mar; 28(3):125-8. PubMed ID: 25615849
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy.
    Yuan C; Chen A; Kolb P; Moy VT
    Biochemistry; 2000 Aug; 39(33):10219-23. PubMed ID: 10956011
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coordination chemistry within a protein host: regulation of the secondary coordination sphere.
    Mann SI; Heinisch T; Ward TR; Borovik AS
    Chem Commun (Camb); 2018 Apr; 54(35):4413-4416. PubMed ID: 29645031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in Regioselectivity of H Atom Abstraction during the Hydroxylation and Cyclization Reactions Catalyzed by Hyoscyamine 6β-Hydroxylase.
    Ushimaru R; Ruszczycky MW; Liu HW
    J Am Chem Soc; 2019 Jan; 141(2):1062-1066. PubMed ID: 30545219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Streptavidin-biotin binding energetics.
    Stayton PS; Freitag S; Klumb LA; Chilkoti A; Chu V; Penzotti JE; To R; Hyre D; Le Trong I; Lybrand TP; Stenkamp RE
    Biomol Eng; 1999 Dec; 16(1-4):39-44. PubMed ID: 10796983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early mechanistic events in biotin dissociation from streptavidin.
    Hyre DE; Amon LM; Penzotti JE; Le Trong I; Stenkamp RE; Lybrand TP; Stayton PS
    Nat Struct Biol; 2002 Aug; 9(8):582-5. PubMed ID: 12134141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The high-resolution structure of (+)-epi-biotin bound to streptavidin.
    Le Trong I; Aubert DG; Thomas NR; Stenkamp RE
    Acta Crystallogr D Biol Crystallogr; 2006 Jun; 62(Pt 6):576-81. PubMed ID: 16699183
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Crystal Structure of Monovalent Streptavidin.
    Zhang M; Biswas S; Deng W; Yu H
    Sci Rep; 2016 Dec; 6():35915. PubMed ID: 28000673
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.