BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 32451140)

  • 1. Photo-fermentation biohydrogen production and electrons distribution from dark fermentation effluents under batch, semi-continuous and continuous modes.
    Li Y; Zhang Z; Xia C; Jing Y; Zhang Q; Li S; Zhu S; Jin P
    Bioresour Technol; 2020 Sep; 311():123549. PubMed ID: 32451140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semi-continuous photo-fermentative H2 production by Rhodobacter sphaeroides: effect of decanting volume ratio.
    Kim DH; Kim MS
    Bioresour Technol; 2012 Jan; 103(1):481-3. PubMed ID: 22036913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot composite tubular bioreactor for outdoor photo-fermentation hydrogen production: From batch to continuous operation.
    Ren C; Zhang S; Li Q; Jiang Q; Li Y; Gao Z; Cao W; Guo L
    Bioresour Technol; 2024 Jun; 401():130705. PubMed ID: 38631655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode.
    Nam JY; Kim DH; Kim SH; Lee W; Shin HS; Kim HW
    Environ Sci Pollut Res Int; 2016 Apr; 23(8):7155-61. PubMed ID: 26150291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems.
    Han W; Yan Y; Shi Y; Gu J; Tang J; Zhao H
    Sci Rep; 2016 Dec; 6():38395. PubMed ID: 27910937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of bio-hydrogen yield and pH stability in photo fermentation process using dark fermentation effluent as succedaneum.
    Li Y; Zhang Z; Zhang Q; Tahir N; Jing Y; Xia C; Zhu S; Zhang X
    Bioresour Technol; 2020 Feb; 297():122504. PubMed ID: 31813819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photo-fermentative H2 production using Rhodobacter sphaeroides by ethanol addition and analysis of soluble microbial products.
    Kim DH; Lee JH; Kang S; Hallenbeck PC; Kim EJ; Lee JK; Kim MS
    Biotechnol Biofuels; 2014; 7():79. PubMed ID: 24883103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment.
    Cai M; Liu J; Wei Y
    Environ Sci Technol; 2004 Jun; 38(11):3195-202. PubMed ID: 15224755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High rate continuous biohydrogen production by hyperthermophilic Thermotoga neapolitana.
    Dreschke G; Papirio S; Scala A; Lens PNL; Esposito G
    Bioresour Technol; 2019 Dec; 293():122033. PubMed ID: 31472408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biohydrogen production by mesophilic fermentation of food wastewater.
    Wu JH; Lin CY
    Water Sci Technol; 2004; 49(5-6):223-8. PubMed ID: 15137427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of biohydrogen production using a reduced pressure fermentation.
    Kisielewska M; Dębowski M; Zieliński M
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1925-33. PubMed ID: 26111633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation.
    Lo YC; Lee KS; Lin PJ; Chang JS
    Bioresour Technol; 2009 Oct; 100(19):4381-7. PubMed ID: 19427198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen production by hup(-) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors.
    Uyar B; Gürgan M; Özgür E; Gündüz U; Yücel M; Eroglu I
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):1935-42. PubMed ID: 26164274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiology and biotechnology of dark fermentative biohydrogen production.
    Ergal İ; Fuchs W; Hasibar B; Thallinger B; Bochmann G; Rittmann SKR
    Biotechnol Adv; 2018 Dec; 36(8):2165-2186. PubMed ID: 30316846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrogen production at pH below 3.0: Is it possible?
    Mota VT; Ferraz Júnior ADN; Trably E; Zaiat M
    Water Res; 2018 Jan; 128():350-361. PubMed ID: 29121503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate.
    Romão BB; Batista FR; Ferreira JS; Costa HC; Resende MM; Cardoso VL
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3670-85. PubMed ID: 24562979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes.
    Robledo-Narváez PN; Muñoz-Páez KM; Poggi-Varaldo HM; Ríos-Leal E; Calva-Calva G; Ortega-Clemente LA; Rinderknecht-Seijas N; Estrada-Vázquez C; Ponce-Noyola MT; Salazar-Montoya JA
    J Environ Manage; 2013 Oct; 128():126-37. PubMed ID: 23732191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
    Magnusson L; Cicek N; Sparling R; Levin D
    Biotechnol Bioeng; 2009 Feb; 102(3):759-66. PubMed ID: 18828175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of pH control on biohydrogen production by single stage hybrid dark- and photo-fermentation.
    Zagrodnik R; Laniecki M
    Bioresour Technol; 2015 Oct; 194():187-95. PubMed ID: 26196419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.