These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32451521)

  • 21. Electronic and magnetic properties of the Janus MoSSe/WSSe superlattice nanoribbon: a first-principles study.
    Yu L; Sun S; Ye X
    Phys Chem Chem Phys; 2020 Jan; 22(4):2498-2508. PubMed ID: 31939967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Second harmonic generation in Janus MoSSe a monolayer and stacked bulk with vertical asymmetry.
    Wei Y; Xu X; Wang S; Li W; Jiang Y
    Phys Chem Chem Phys; 2019 Oct; 21(37):21022-21029. PubMed ID: 31528892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides.
    Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H
    J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BlueP encapsulated Janus MoSSe as a promising heterostructure anode material for LIBs.
    Barik G; Pal S
    Phys Chem Chem Phys; 2024 Jul; 26(26):18054-18066. PubMed ID: 38895793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of permanent and induced electrostatic dipole moments for Schottky barriers in Janus MXY/graphene heterostructures: a first-principles study.
    Chen YQ; Zhang HH; Wen B; Li XB; Wei XL; Yin WJ; Liu LM; Teobaldi G
    Dalton Trans; 2022 Jun; 51(25):9905-9914. PubMed ID: 35722990
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of different surface functionalization on the electronic properties and contact types of graphene/functionalized-GeC van der Waals heterostructures.
    Vu TV; Dao TP; Idrees M; Phuc HV; Hieu NN; Binh NTT; Dinh HB; Amin B; Nguyen CV
    Phys Chem Chem Phys; 2020 Apr; 22(15):7952-7961. PubMed ID: 32232260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications.
    Tang X; Ye H; Liu W; Liu Y; Guo Z; Wang M
    Nanoscale Adv; 2021 May; 3(10):2902-2910. PubMed ID: 36134199
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study.
    Guo W; Ge X; Sun S; Xie Y; Ye X
    Phys Chem Chem Phys; 2020 Mar; 22(9):4946-4956. PubMed ID: 32073069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving Catalytic Activity of "Janus" MoSSe Based on Surface Interface Regulation.
    Wang M; Wang X; Zheng M; Zhou X
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144773
    [TBL] [Abstract][Full Text] [Related]  

  • 30. n- and p-type ohmic contacts at monolayer gallium nitride-metal interfaces.
    Guo Y; Pan F; Ren Y; Yao B; Yang C; Ye M; Wang Y; Li J; Zhang X; Yan J; Yang J; Lu J
    Phys Chem Chem Phys; 2018 Oct; 20(37):24239-24249. PubMed ID: 30209481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monolayer SnS
    Li H; Zhang Y; Liu F; Lu J
    Nanoscale; 2024 Oct; 16(38):18005-18013. PubMed ID: 39248678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phonon transport in Janus monolayer MoSSe: a first-principles study.
    Guo SD
    Phys Chem Chem Phys; 2018 Mar; 20(10):7236-7242. PubMed ID: 29484328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified MXene: promising electrode materials for constructing Ohmic contacts with MoS
    Zhao P; Jin H; Lv X; Huang B; Ma Y; Dai Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16551-16557. PubMed ID: 29872795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-principles calculations of the electronic properties of SiC-based bilayer and trilayer heterostructures.
    Li S; Sun M; Chou JP; Wei J; Xing H; Hu A
    Phys Chem Chem Phys; 2018 Oct; 20(38):24726-24734. PubMed ID: 30225488
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spin-dependent Schottky barriers and vacancy-induced spin-selective ohmic contacts in magnetic vdW heterostructures.
    Li H; Xu YK; Cheng ZP; He BG; Zhang WB
    Phys Chem Chem Phys; 2020 May; 22(17):9460-9466. PubMed ID: 32314778
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of external electric field on the sensing property of volatile organic compounds over Janus MoSSe monolayer: a first-principles investigation.
    Yeh CH; Chen YT; Hsieh DW
    RSC Adv; 2021 Oct; 11(53):33276-33287. PubMed ID: 35497532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning Schottky barriers for monolayer GaSe FETs by exploiting a weak Fermi level pinning effect.
    Liu N; Zhou S; Gao N; Zhao J
    Phys Chem Chem Phys; 2018 Aug; 20(33):21732-21738. PubMed ID: 30105339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. General criterion to distinguish between Schottky and Ohmic contacts at the metal/two-dimensional semiconductor interface.
    Chen Y; Li Y; Wu J; Duan W
    Nanoscale; 2017 Feb; 9(5):2068-2073. PubMed ID: 28116389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable Schottky contacts in graphene/XAu
    Xue Y; Gao L; Ren W; Shai X; Wei T; Zeng C; Wang H
    Phys Chem Chem Phys; 2023 May; 25(17):12245-12251. PubMed ID: 37074081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tunable Schottky contacts in MSe
    Lv X; Wei W; Zhao P; Li J; Huang B; Dai Y
    Phys Chem Chem Phys; 2018 Jan; 20(3):1897-1903. PubMed ID: 29296994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.