These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 32451522)

  • 1. Lipidomic atlas of mammalian cell membranes reveals hierarchical variation induced by culture conditions, subcellular membranes, and cell lineages.
    Symons JL; Cho KJ; Chang JT; Du G; Waxham MN; Hancock JF; Levental I; Levental KR
    Soft Matter; 2021 Jan; 17(2):288-297. PubMed ID: 32451522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The expanding organelle lipidomes: current knowledge and challenges.
    Sarmento MJ; Llorente A; Petan T; Khnykin D; Popa I; Nikolac Perkovic M; Konjevod M; Jaganjac M
    Cell Mol Life Sci; 2023 Aug; 80(8):237. PubMed ID: 37530856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ω-3 polyunsaturated fatty acids direct differentiation of the membrane phenotype in mesenchymal stem cells to potentiate osteogenesis.
    Levental KR; Surma MA; Skinkle AD; Lorent JH; Zhou Y; Klose C; Chang JT; Hancock JF; Levental I
    Sci Adv; 2017 Nov; 3(11):eaao1193. PubMed ID: 29134198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness.
    Levental KR; Malmberg E; Symons JL; Fan YY; Chapkin RS; Ernst R; Levental I
    Nat Commun; 2020 Mar; 11(1):1339. PubMed ID: 32165635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse lipidomics reveals inherent flexibility of a mammalian lipidome.
    Surma MA; Gerl MJ; Herzog R; Helppi J; Simons K; Klose C
    Sci Rep; 2021 Sep; 11(1):19364. PubMed ID: 34588529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patches and Blebs: A Comparative Study of the Composition and Biophysical Properties of Two Plasma Membrane Preparations from CHO Cells.
    Monasterio BG; Jiménez-Rojo N; García-Arribas AB; Riezman H; Goñi FM; Alonso A
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enabling High Structural Specificity to Lipidomics by Coupling Photochemical Derivatization with Tandem Mass Spectrometry.
    Ma X; Zhang W; Li Z; Xia Y; Ouyang Z
    Acc Chem Res; 2021 Oct; 54(20):3873-3882. PubMed ID: 34570464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contemporary lipidomic analytics: opportunities and pitfalls.
    Giles C; Takechi R; Lam V; Dhaliwal SS; Mamo JCL
    Prog Lipid Res; 2018 Jul; 71():86-100. PubMed ID: 29959947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Remodeling of Membranes and Their Lipids during Acute Hormone-Induced Steroidogenesis in MA-10 Mouse Leydig Tumor Cells.
    Venugopal S; Galano M; Chan R; Sanyal E; Issop L; Lee S; Taylor L; Kaur P; Daly E; Papadopoulos V
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33806352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipidomics: practical aspects and applications.
    Wolf C; Quinn PJ
    Prog Lipid Res; 2008 Jan; 47(1):15-36. PubMed ID: 17980916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular organelle lipidomics in TLR-4-activated macrophages.
    Andreyev AY; Fahy E; Guan Z; Kelly S; Li X; McDonald JG; Milne S; Myers D; Park H; Ryan A; Thompson BM; Wang E; Zhao Y; Brown HA; Merrill AH; Raetz CR; Russell DW; Subramaniam S; Dennis EA
    J Lipid Res; 2010 Sep; 51(9):2785-97. PubMed ID: 20574076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Single-Organelle Lipidomics in Live Cells.
    Lita A; Kuzmin AN; Pliss A; Baev A; Rzhevskii A; Gilbert MR; Larion M; Prasad PN
    Anal Chem; 2019 Sep; 91(17):11380-11387. PubMed ID: 31381322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Need for more focus on lipid species in studies of biological and model membranes.
    Skotland T; Sandvig K
    Prog Lipid Res; 2022 Apr; 86():101160. PubMed ID: 35288150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Monitoring of the Mammalian Lipidome by Quantitative Shotgun Lipidomics.
    Nielsen IØ; Maeda K; Bilgin M
    Methods Mol Biol; 2017; 1609():123-139. PubMed ID: 28660579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature change elicits lipidome adaptation in the simple organisms Mycoplasma mycoides and JCVI-syn3B.
    Safronova N; Junghans L; Saenz JP
    Cell Rep; 2024 Jul; 43(7):114435. PubMed ID: 38985673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples.
    Han X; Gross RW
    Mass Spectrom Rev; 2005; 24(3):367-412. PubMed ID: 15389848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current Progress in Lipidomics of Marine Invertebrates.
    Imbs AB; Ermolenko EV; Grigorchuk VP; Sikorskaya TV; Velansky PV
    Mar Drugs; 2021 Nov; 19(12):. PubMed ID: 34940659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LION/web: a web-based ontology enrichment tool for lipidomic data analysis.
    Molenaar MR; Jeucken A; Wassenaar TA; van de Lest CHA; Brouwers JF; Helms JB
    Gigascience; 2019 Jun; 8(6):. PubMed ID: 31141612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A set of gene knockouts as a resource for global lipidomic changes.
    Spiegel A; Lauber C; Bachmann M; Heninger AK; Klose C; Simons K; Sarov M; Gerl MJ
    Sci Rep; 2022 Jun; 12(1):10533. PubMed ID: 35732804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative lipidomic analysis of mammalian retinal ganglion cells and Müller glia in situ and in vitro using High-Resolution Imaging Mass Spectrometry.
    Pereiro X; Fernández R; Barreda-Gómez G; Ruzafa N; Acera A; Araiz J; Astigarraga E; Vecino E
    Sci Rep; 2020 Nov; 10(1):20053. PubMed ID: 33208898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.