BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32451781)

  • 1. Transient renal dysfunction due to rhabdomyolysis after robot-assisted radical prostatectomy.
    Onagi A; Haga N; Tanji R; Honda R; Matsuoka K; Hoshi S; Koguchi T; Hata J; Sato Y; Akaihata H; Kataoka M; Ogawa S; Kojima Y
    Int Urol Nephrol; 2020 Oct; 52(10):1877-1884. PubMed ID: 32451781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Positioning injury, rhabdomyolysis, and serum creatine kinase-concentration course in patients undergoing robot-assisted radical prostatectomy and extended pelvic lymph node dissection.
    Mattei A; Di Pierro GB; Rafeld V; Konrad C; Beutler J; Danuser H
    J Endourol; 2013 Jan; 27(1):45-51. PubMed ID: 22770120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy of the opened legs position for protecting against postoperative rhabdomyolysis after robot-assisted radical prostatectomy: A propensity score-matched analysis of perioperative outcomes.
    Tsubouchi K; Gunge N; Tominaga K; Matsuzaki H; Fujikawa A; Emoto T; Miyazaki T; Okabe Y; Nakamura N; Kataoka M; Ogawa S; Akaihata H; Sato Y; Hata J; Matsuoka H; Kojima Y; Haga N
    Int J Urol; 2022 Oct; 29(10):1132-1138. PubMed ID: 35606052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pragmatic Randomized Controlled Trial Examining the Impact of the Retzius-sparing Approach on Early Urinary Continence Recovery After Robot-assisted Radical Prostatectomy.
    Dalela D; Jeong W; Prasad MA; Sood A; Abdollah F; Diaz M; Karabon P; Sammon J; Jamil M; Baize B; Simone A; Menon M
    Eur Urol; 2017 Nov; 72(5):677-685. PubMed ID: 28483330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association Between Acute Kidney Injury and the Trendelenburg Position Angle During Robot-assisted Radical Prostatectomy.
    Masuda H; Amemiya Y; Yagisawa N; Arai T; Yanagisawa M
    Anticancer Res; 2024 Apr; 44(4):1767-1772. PubMed ID: 38538005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atherosclerosis as a predictor of delayed recovery from lower urinary tract dysfunction after robot-assisted laparoscopic radical prostatectomy.
    Yabe M; Haga N; Ogawa S; Kataoka M; Akaihata H; Sato Y; Hata J; Ishibashi K; Kojima Y
    Neurourol Urodyn; 2016 Nov; 35(8):920-925. PubMed ID: 26297155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravesical prostatic protrusion may affect early postoperative continence undergoing robot-assisted radical prostatectomy.
    Hikita K; Honda M; Teraoka S; Nishikawa R; Kimura Y; Tsounapi P; Iwamoto H; Morizane S; Takenaka A
    BMC Urol; 2020 Oct; 20(1):164. PubMed ID: 33087082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective assessment of time-dependent changes in quality of life of Japanese patients with prostate cancer following robot-assisted radical prostatectomy.
    Miyake H; Miyazaki A; Furukawa J; Hinata N; Fujisawa M
    J Robot Surg; 2016 Sep; 10(3):201-7. PubMed ID: 26885662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does Robot-Assisted Radical Prostatectomy Affect Renal Intravascular Parameters and Glomerular Filtration Rate?
    Islamoglu E; Cekic B; Yildiz A; Sarac K; Karamik K; Savas M
    J Laparoendosc Adv Surg Tech A; 2019 Apr; 29(4):445-448. PubMed ID: 30222509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and feasibility of outpatient robot-assisted radical prostatectomy.
    Banapour P; Elliott P; Jabaji R; Parekh A; Pathak A; Merchant M; Tamaddon K
    J Robot Surg; 2019 Apr; 13(2):261-265. PubMed ID: 30003407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute kidney injury and its impact on renal prognosis after robot-assisted laparoscopic radical prostatectomy.
    Sato H; Narita S; Saito M; Yamamoto R; Koizumi A; Nara T; Kanda S; Numakura K; Inoue T; Satoh S; Abe K; Habuchi T
    Int J Med Robot; 2020 Oct; 16(5):1-7. PubMed ID: 32362068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early outcomes of single-port robot-assisted radical prostatectomy: lessons learned from the learning-curve experience.
    Covas Moschovas M; Bhat S; Onol F; Rogers T; Patel V
    BJU Int; 2021 Jan; 127(1):114-121. PubMed ID: 32623822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effect of the Vesical Adaptation Response to Diuresis on Lower Urinary Tract Symptoms after Robot-Assisted Laparoscopic Radical Prostatectomy: A Pilot Proof of Concept Study.
    Haga N; Aikawa K; Hoshi S; Yabe M; Akaihata H; Hata J; Sato Y; Ogawa S; Ishibashi K; Kojima Y
    PLoS One; 2016; 11(7):e0159514. PubMed ID: 27447829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of preoperative factors including urodynamic evaluations and nerve-sparing status for predicting urinary continence recovery after robot-assisted radical prostatectomy: Nerve-sparing technique contributes to the reduction of postprostatectomy incontinence.
    Kadono Y; Ueno S; Kadomoto S; Iwamoto H; Takezawa Y; Nakashima K; Nohara T; Izumi K; Mizokami A; Gabata T; Namiki M
    Neurourol Urodyn; 2016 Nov; 35(8):1034-1039. PubMed ID: 26352154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive factors and oncological outcomes of persistently elevated prostate-specific antigen in patients following robot-assisted radical prostatectomy.
    Kumar A; Samavedi S; Mouraviev V; Bates AS; Coelho RF; Rocco B; Patel VR
    J Robot Surg; 2017 Mar; 11(1):37-45. PubMed ID: 27245233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New steps of robot-assisted radical prostatectomy using the extraperitoneal approach: a propensity-score matched comparison between extraperitoneal and transperitoneal approach in Japanese patients.
    Kurokawa S; Umemoto Y; Mizuno K; Okada A; Nakane A; Nishio H; Hamamoto S; Ando R; Kawai N; Tozawa K; Hayashi Y; Yasui T
    BMC Urol; 2017 Nov; 17(1):106. PubMed ID: 29162068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative intraocular pressure changes during robot-assisted radical prostatectomy: associations with perioperative and clinicopathological factors.
    Shirono Y; Takizawa I; Kasahara T; Maruyama R; Yamana K; Tanikawa T; Hara N; Sakaue Y; Togano T; Nishiyama T; Fukuchi T; Tomita Y
    BMC Urol; 2020 Mar; 20(1):26. PubMed ID: 32164666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Periurethral Inflammation on Continence Status Early After Robot-Assisted Radical Prostatectomy.
    Momozono H; Miyake H; Fujisawa M
    J Endourol; 2016 Nov; 30(11):1207-1213. PubMed ID: 27597311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A prediction model relating the extent of intraoperative fascia preservation to erectile dysfunction after nerve-sparing robot-assisted radical prostatectomy.
    KleinJan GH; Sikorska K; Korne CM; Brouwer OR; Buckle T; Tillier C; van der Roest RCM; de Jong J; van Leeuwen FWB; van der Poel HG
    J Robot Surg; 2019 Jun; 13(3):455-462. PubMed ID: 30178300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety of selective nerve sparing in high risk prostate cancer during robot-assisted radical prostatectomy.
    Kumar A; Samavedi S; Bates AS; Mouraviev V; Coelho RF; Rocco B; Patel VR
    J Robot Surg; 2017 Jun; 11(2):129-138. PubMed ID: 27435701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.