These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 32451891)
1. Rhamnolipid production by Pseudomonas aeruginosa grown on membranes of bacterial cellulose supplemented with corn bran water extract. Conceição KS; de Alencar Almeida M; Sawoniuk IC; Marques GD; de Sousa Faria-Tischer PC; Tischer CA; Vignoli JA; Camilios-Neto D Environ Sci Pollut Res Int; 2020 Aug; 27(24):30222-30231. PubMed ID: 32451891 [TBL] [Abstract][Full Text] [Related]
2. Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Camilios-Neto D; Bugay C; de Santana-Filho AP; Joslin T; de Souza LM; Sassaki GL; Mitchell DA; Krieger N Appl Microbiol Biotechnol; 2011 Mar; 89(5):1395-403. PubMed ID: 21080163 [TBL] [Abstract][Full Text] [Related]
3. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
4. Rhamnolipids--next generation surfactants? Müller MM; Kügler JH; Henkel M; Gerlitzki M; Hörmann B; Pöhnlein M; Syldatk C; Hausmann R J Biotechnol; 2012 Dec; 162(4):366-80. PubMed ID: 22728388 [TBL] [Abstract][Full Text] [Related]
5. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Correia J; Gudiña EJ; Lazar Z; Janek T; Teixeira JA Appl Microbiol Biotechnol; 2022 Nov; 106(22):7477-7489. PubMed ID: 36222896 [TBL] [Abstract][Full Text] [Related]
6. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
7. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S; Jayachandran K J Appl Microbiol; 2013 Feb; 114(2):373-83. PubMed ID: 23164038 [TBL] [Abstract][Full Text] [Related]
8. Recent progress towards industrial rhamnolipids fermentation: Process optimization and foam control. Jiang J; Zu Y; Li X; Meng Q; Long X Bioresour Technol; 2020 Feb; 298():122394. PubMed ID: 31757615 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Tripathi L; Twigg MS; Zompra A; Salek K; Irorere VU; Gutierrez T; Spyroulias GA; Marchant R; Banat IM Microb Cell Fact; 2019 Oct; 18(1):164. PubMed ID: 31597569 [TBL] [Abstract][Full Text] [Related]
11. Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. George S; Jayachandran K Appl Biochem Biotechnol; 2009 Sep; 158(3):694-705. PubMed ID: 18716921 [TBL] [Abstract][Full Text] [Related]
12. Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Varjani S; Rakholiya P; Yong Ng H; Taherzadeh MJ; Hao Ngo H; Chang JS; Wong JWC; You S; Teixeira JA; Bui XT Bioresour Technol; 2021 Jan; 319():124213. PubMed ID: 33254448 [TBL] [Abstract][Full Text] [Related]
13. Optimization of the production of rhamnolipids by Pseudomonas aeruginosa UFPEDA 614 in solid-state culture. Camilios Neto D; Meira JA; de Araújo JM; Mitchell DA; Krieger N Appl Microbiol Biotechnol; 2008 Dec; 81(3):441-8. PubMed ID: 18766338 [TBL] [Abstract][Full Text] [Related]
14. Production of rhamnolipid biosurfactants in solid-state fermentation: process optimization and characterization studies. Dabaghi S; Ataei SA; Taheri A BMC Biotechnol; 2023 Jan; 23(1):2. PubMed ID: 36694155 [TBL] [Abstract][Full Text] [Related]
15. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Hošková M; Ježdík R; Schreiberová O; Chudoba J; Šír M; Čejková A; Masák J; Jirků V; Řezanka T J Biotechnol; 2015 Jan; 193():45-51. PubMed ID: 25433178 [TBL] [Abstract][Full Text] [Related]
16. Investigation on spectral and biomedical characterization of rhamnolipid from a marine associated bacterium Pseudomonas aeruginosa (DKB1). Sanjivkumar M; Deivakumari M; Immanuel G Arch Microbiol; 2021 Jul; 203(5):2297-2314. PubMed ID: 33646338 [TBL] [Abstract][Full Text] [Related]
17. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471 [TBL] [Abstract][Full Text] [Related]
18. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a New Rhamnolipid Biosurfactant Complex from Shreve GS; Makula R Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31861084 [TBL] [Abstract][Full Text] [Related]
20. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]