These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32452207)

  • 1. Stretchable and Superelastic Fibrous Sponges Tailored by "Stiff-Soft" Bicomponent Electrospun Fibers for Warmth Retention.
    Wu H; Li Y; Zhao L; Wang S; Tian Y; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27562-27571. PubMed ID: 32452207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultralight and Mechanically Robust Fibrous Sponges Tailored by Semi-Interpenetrating Polymer Networks for Warmth Retention.
    Wu H; Zhao L; Zhang S; Si Y; Yu J; Ding B
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18165-18174. PubMed ID: 33834758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superelastic and Fire-Retardant Nano-/Microfibrous Sponges for High-Efficiency Warmth Retention.
    Zhang R; Gong X; Wang S; Tian Y; Liu Y; Zhang S; Yu J; Ding B
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58027-58035. PubMed ID: 34821147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultralight and Superelastic Curly Micro/Nanofibrous Aerogels by Direct Electrospinning Enable High-Performance Warmth Retention.
    Wang S; Zhu C; Wang F; Yu J; Zhang S; Ding B
    Small; 2023 Oct; 19(41):e2302835. PubMed ID: 37312622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralight, Superelastic, and Washable Nanofibrous Sponges with Rigid-Flexible Coupling Architecture Enable Reusable Warmth Retention.
    Wu H; Cai H; Zhang S; Yu J; Ding B
    Nano Lett; 2022 Jan; 22(2):830-837. PubMed ID: 35005975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological Polymer Networks-Enabled Mechanically Strong Polyamide-Imide Aerogel Fibers for Thermal Insulation in Harsh Environments.
    Li Y; Cui W; Wang X; Zhang S; Du Q; Fan J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39016461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polydopamine Inter-Fiber Networks: New Strategy for Producing Rigid, Sticky, 3D Fluffy Electrospun Fibrous Polycaprolactone Sponges.
    Choi W; Lee S; Kim SH; Jang JH
    Macromol Biosci; 2016 Jun; 16(6):824-35. PubMed ID: 26855375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultralight, Thermally Insulating, Compressible Polyimide Fiber Assembled Sponges.
    Jiang S; Uch B; Agarwal S; Greiner A
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):32308-32315. PubMed ID: 28840720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO
    Cheng W; Jiao W; Fei Y; Yang Z; Zhang X; Wu F; Liu Y; Yin X; Ding B
    Nanoscale; 2024 Jan; 16(3):1135-1146. PubMed ID: 37999715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gradient structured micro/nanofibrous sponges with superior compressibility and stretchability for broadband sound absorption.
    Feng Y; Zong D; Hou Y; Yin X; Zhang S; Duan L; Si Y; Jia Y; Ding B
    J Colloid Interface Sci; 2021 Jul; 593():59-66. PubMed ID: 33744552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-density Fibrous Polyimide Sponges with Superior Mechanical and Thermal Properties.
    Jiang S; Cheong JY; Nam JS; Kim ID; Agarwal S; Greiner A
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):19006-19014. PubMed ID: 32216283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binary Polyamide-Imide Fibrous Superelastic Aerogels for Fire-Retardant and High-Temperature Air Filtration.
    Hua Y; Cui W; Ji Z; Wang X; Wu Z; Liu Y; Li Y
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin Aerogel Micro/Nanofiber Membranes with Hierarchical Cellular Architecture for High-Performance Warmth Retention.
    Tian Y; Wang S; Yang M; Liu S; Yu J; Zhang S; Ding B
    ACS Nano; 2023 Dec; 17(24):25439-25448. PubMed ID: 38071622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticorrosive, Ultralight, and Flexible Carbon-Wrapped Metallic Nanowire Hybrid Sponges for Highly Efficient Electromagnetic Interference Shielding.
    Wan YJ; Zhu PL; Yu SH; Sun R; Wong CP; Liao WH
    Small; 2018 Jul; 14(27):e1800534. PubMed ID: 29847702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-conducting elastic ultrafine fiber sponges with boron nitride networks for noise reduction.
    Zong D; Yin X; Yu J; Jiao W; Zhang S; Ding B
    J Colloid Interface Sci; 2023 Nov; 649():1023-1030. PubMed ID: 37393768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralight, Structurally Stable Electrospun Sponges with Tailored Hydrophilicity as a Novel Material Platform.
    Cheong JY; Mafi M; Benker L; Zhu J; Mader M; Liang C; Hou H; Agarwal S; Kim ID; Greiner A
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):18002-18011. PubMed ID: 32157865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicomponent electrospinning to fabricate three-dimensional hydrogel-hybrid nanofibrous scaffolds with spatial fiber tortuosity.
    Jin G; Lee S; Kim SH; Kim M; Jang JH
    Biomed Microdevices; 2014 Dec; 16(6):793-804. PubMed ID: 24972552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-Step, Large-Scale Blow Spinning to Fabricate Ultralight, Fibrous Sorbents with Ultrahigh Oil Adsorption Capacity.
    Zhang H; Wang R; Li P; Jia L; Wang F; Liu Y; Wang H; Yu L; Li B
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6631-6641. PubMed ID: 33512993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications.
    Ding Y; Xu W; Wang W; Fong H; Zhu Z
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30014-30023. PubMed ID: 28806516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultralight, Superelastic, and Fatigue-Resistant Graphene Aerogel Templated by Graphene Oxide Liquid Crystal Stabilized Air Bubbles.
    Zhang X; Zhang T; Wang Z; Ren Z; Yan S; Duan Y; Zhang J
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):1303-1310. PubMed ID: 30525407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.