BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 32452386)

  • 1. How does normal variability in trunk flexion affect lower limb muscle activity during walking?
    Alghamdi W; Preece SJ
    Hum Mov Sci; 2020 Aug; 72():102630. PubMed ID: 32452386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of increasing trunk flexion during normal walking.
    Preece SJ; Alghamdi W
    Gait Posture; 2021 Jan; 83():250-255. PubMed ID: 33197861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased trunk flexion may underlie elevated knee flexor activity in people with knee osteoarthritis.
    Preece SJ; Alghamdi W
    Knee; 2021 Dec; 33():216-225. PubMed ID: 34717093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trunk flexion during walking in people with knee osteoarthritis.
    Preece SJ; Algarni AS; Jones RK
    Gait Posture; 2019 Jul; 72():202-205. PubMed ID: 31254772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking with an induced unilateral knee extension restriction affects lower but not upper body biomechanics in healthy adults.
    Sotelo M; Eichelberger P; Furrer M; Baur H; Schmid S
    Gait Posture; 2018 Sep; 65():182-189. PubMed ID: 30558928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individuals with knee osteoarthritis demonstrate increased passive stiffness of the hip flexor muscles.
    Preece SJ; Alghamdi W; Jones RK
    Knee; 2023 Mar; 41():302-310. PubMed ID: 36801496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ipsilateral and contralateral foot pronation affect lower limb and trunk biomechanics of individuals with knee osteoarthritis during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Hassan EA; Fonseca ST
    Clin Biomech (Bristol, Avon); 2016 May; 34():30-7. PubMed ID: 27060435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mild leg length discrepancy affects lower limbs, pelvis and trunk biomechanics of individuals with knee osteoarthritis during gait.
    Resende RA; Kirkwood RN; Deluzio KJ; Morton AM; Fonseca ST
    Clin Biomech (Bristol, Avon); 2016 Oct; 38():1-7. PubMed ID: 27509479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of walking speed variation-induced synchronized dynamic changes in lower limb joint angles and activity of trunk and lower limb muscles with a newly developed gait analysis system.
    Miura K; Kadone H; Koda M; Nakayama K; Kumagai H; Nagashima K; Mataki K; Fujii K; Noguchi H; Funayama T; Abe T; Suzuki K; Yamazaki M
    J Orthop Surg (Hong Kong); 2018; 26(3):2309499018806688. PubMed ID: 30352539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical and neuromuscular changes with lateral trunk lean gait modifications.
    Robbins SM; Teoli A; Preuss RA
    Gait Posture; 2016 Sep; 49():252-257. PubMed ID: 27472821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trunk and lower limb biomechanics during stair climbing in people with and without symptomatic femoroacetabular impingement.
    Hammond CA; Hatfield GL; Gilbart MK; Garland SJ; Hunt MA
    Clin Biomech (Bristol, Avon); 2017 Feb; 42():108-114. PubMed ID: 28135662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral trunk lean and medializing the knee as gait strategies for knee osteoarthritis.
    Gerbrands TA; Pisters MF; Theeven PJR; Verschueren S; Vanwanseele B
    Gait Posture; 2017 Jan; 51():247-253. PubMed ID: 27838568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimentally reduced hip-abductor muscle strength and frontal-plane biomechanics during walking.
    Pohl MB; Kendall KD; Patel C; Wiley JP; Emery C; Ferber R
    J Athl Train; 2015 Apr; 50(4):385-91. PubMed ID: 25875071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of fatigue on lower limb, pelvis and trunk kinematics and muscle activation: Gender differences.
    Lessi GC; Dos Santos AF; Batista LF; de Oliveira GC; Serrão FV
    J Electromyogr Kinesiol; 2017 Feb; 32():9-14. PubMed ID: 27865130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical adaptations during running differ based on type of exercise and fitness level.
    Slater LV; Simpson AS; Blemker SS; Hertel J; Saliba SA; Weltman AL; Hart JM
    Gait Posture; 2018 Feb; 60():35-40. PubMed ID: 29153477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical mechanism of lateral trunk lean gait for knee osteoarthritis patients.
    Tokuda K; Anan M; Takahashi M; Sawada T; Tanimoto K; Kito N; Shinkoda K
    J Biomech; 2018 Jan; 66():10-17. PubMed ID: 29150344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An exploration of the differences in hip strength, gluteus medius activity, and trunk, pelvis, and lower-limb biomechanics during different functional tasks.
    Sinsurin K; Valldecabres R; Richards J
    Int Biomech; 2020 Dec; 7(1):35-43. PubMed ID: 33998384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of walking with a modified gait on activation patterns of the knee spanning muscles in people with medial knee osteoarthritis.
    Booij MJ; Richards R; Harlaar J; van den Noort JC
    Knee; 2020 Jan; 27(1):198-206. PubMed ID: 31882386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the Effects of High-Intensity, Intermittent Exercise and Unanticipation on Trunk and Lower Limb Biomechanics During a Side-Cutting Maneuver Using Statistical Parametric Mapping.
    Whyte EF; Richter C; OʼConnor S; Moran KA
    J Strength Cond Res; 2018 Jun; 32(6):1583-1593. PubMed ID: 29543702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.