BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 32452636)

  • 1. Evolution of Bio-Inspired Artificial Synapses: Materials, Structures, and Mechanisms.
    Yu H; Wei H; Gong J; Han H; Ma M; Wang Y; Xu W
    Small; 2021 Mar; 17(9):e2000041. PubMed ID: 32452636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives.
    Pan X; Jin T; Gao J; Han C; Shi Y; Chen W
    Small; 2020 Aug; 16(34):e2001504. PubMed ID: 32734644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption.
    Xu W; Min SY; Hwang H; Lee TW
    Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible Artificial Sensory Systems Based on Neuromorphic Devices.
    Sun F; Lu Q; Feng S; Zhang T
    ACS Nano; 2021 Mar; 15(3):3875-3899. PubMed ID: 33507725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing.
    Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C
    ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The coexistence of threshold and memory switching characteristics of ALD HfO
    Abbas H; Abbas Y; Hassan G; Sokolov AS; Jeon YR; Ku B; Kang CJ; Choi C
    Nanoscale; 2020 Jul; 12(26):14120-14134. PubMed ID: 32597451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexible Ionic-Electronic Hybrid Oxide Synaptic TFTs with Programmable Dynamic Plasticity for Brain-Inspired Neuromorphic Computing.
    John RA; Ko J; Kulkarni MR; Tiwari N; Chien NA; Ing NG; Leong WL; Mathews N
    Small; 2017 Aug; 13(32):. PubMed ID: 28656608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability.
    Wu C; Kim TW; Choi HY; Strukov DB; Yang JJ
    Nat Commun; 2017 Sep; 8(1):752. PubMed ID: 28963546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Organic Flexible Artificial Bio-Synapses with Long-Term Plasticity for Neuromorphic Computing.
    Wang TY; He ZY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhou P; Zhang DW
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-Efficient Artificial Synapses Based on Oxide Tunnel Junctions.
    Li J; Ge C; Lu H; Guo H; Guo EJ; He M; Wang C; Yang G; Jin K
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43473-43479. PubMed ID: 31702891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress in Three-Terminal Artificial Synapses: From Device to System.
    Han H; Yu H; Wei H; Gong J; Xu W
    Small; 2019 Aug; 15(32):e1900695. PubMed ID: 30972944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.
    Li Y; Zhong Y; Zhang J; Xu L; Wang Q; Sun H; Tong H; Cheng X; Miao X
    Sci Rep; 2014 May; 4():4906. PubMed ID: 24809396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of Simple but Powerful Trilayer Oxide-Based Artificial Synapses with a Tailored Bio-Synapse-Like Structure.
    Zhang H; Ju X; Yew KS; Ang DS
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1036-1045. PubMed ID: 31815426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Design of 3D-Interface Architecture in an Ultralow-Power, Electrospun Single-Fiber Synaptic Transistor for Neuromorphic Computing.
    Liu D; Shi Q; Dai S; Huang J
    Small; 2020 Apr; 16(13):e1907472. PubMed ID: 32068955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memristors based on 2D MoSe
    Duan H; Wang D; Gou J; Guo F; Jie W; Hao J
    Nanoscale; 2023 Jun; 15(23):10089-10096. PubMed ID: 37249372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.