BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32452669)

  • 1. Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s.
    Hunt AP; Samanta S; Dent MR; Milbauer MW; Burstyn JN; Lehnert N
    Inorg Chem; 2020 Jun; 59(12):8034-8043. PubMed ID: 32452669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring second coordination sphere effects in nitric oxide synthase.
    McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N
    J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Thiolate Trans Effect in Heme {FeNO}
    Hunt AP; Lehnert N
    Inorg Chem; 2019 Sep; 58(17):11317-11332. PubMed ID: 30912445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of thiolate- and carboxylate-ligated ferric H93G myoglobin: models for cytochrome P450 and for oxyanion-bound heme proteins.
    Qin J; Perera R; Lovelace LL; Dawson JH; Lebioda L
    Biochemistry; 2006 Mar; 45(10):3170-7. PubMed ID: 16519512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic structure of ferric heme nitrosyl complexes with thiolate coordination.
    Paulat F; Lehnert N
    Inorg Chem; 2007 Mar; 46(5):1547-9. PubMed ID: 17286401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron Paramagnetic Resonance Spectroscopy as a Probe of Hydrogen Bonding in Heme-Thiolate Proteins.
    Dent MR; Milbauer MW; Hunt AP; Aristov MM; Guzei IA; Lehnert N; Burstyn JN
    Inorg Chem; 2019 Dec; 58(23):16011-16027. PubMed ID: 31786931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alternative modes of O
    Soldatova AV; Spiro TG
    J Inorg Biochem; 2020 Jun; 207():111054. PubMed ID: 32217351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes.
    Namuswe F; Kasper GD; Sarjeant AA; Hayashi T; Krest CM; Green MT; Moënne-Loccoz P; Goldberg DP
    J Am Chem Soc; 2008 Oct; 130(43):14189-200. PubMed ID: 18837497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D; de Visser SP; Sharma PK; Hirao H; Shaik S
    Biochemistry; 2005 Jun; 44(22):8148-58. PubMed ID: 15924434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.
    Sigman JA; Pond AE; Dawson JH; Lu Y
    Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiolate coordination to Fe(II)-porphyrin NO centers.
    Praneeth VK; Haupt E; Lehnert N
    J Inorg Biochem; 2005 Apr; 99(4):940-8. PubMed ID: 15811511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure of heme-nitrosyls and its significance for nitric oxide reactivity, sensing, transport, and toxicity in biological systems.
    Goodrich LE; Paulat F; Praneeth VK; Lehnert N
    Inorg Chem; 2010 Jul; 49(14):6293-316. PubMed ID: 20666388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The conserved Trp-Cys hydrogen bond dampens the "push effect" of the heme cysteinate proximal ligand during the first catalytic cycle of nitric oxide synthase.
    Lang J; Santolini J; Couture M
    Biochemistry; 2011 Nov; 50(46):10069-81. PubMed ID: 22023145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating the role of the proximal cysteine hydrogen-bonding network in ferric cytochrome P450cam and corresponding mutants using magnetic circular dichroism spectroscopy.
    Galinato MG; Spolitak T; Ballou DP; Lehnert N
    Biochemistry; 2011 Feb; 50(6):1053-69. PubMed ID: 21158478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectroscopy of non-heme iron thiolate complexes: insight into the electronic structure of the low-spin active site of nitrile hydratase.
    Kennepohl P; Neese F; Schweitzer D; Jackson HL; Kovacs JA; Solomon EI
    Inorg Chem; 2005 Mar; 44(6):1826-36. PubMed ID: 15762709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new look at the role of thiolate ligation in cytochrome P450.
    Yosca TH; Ledray AP; Ngo J; Green MT
    J Biol Inorg Chem; 2017 Apr; 22(2-3):209-220. PubMed ID: 28091754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of axial ligand, spin state, and hydrogen bonding on the inner-sphere reorganization energies of functional models of cytochrome P450.
    Bandyopadhyay S; Rana A; Mittra K; Samanta S; Sengupta K; Dey A
    Inorg Chem; 2014 Oct; 53(19):10150-8. PubMed ID: 25238648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 'push' effect of the thiolate ligand in cytochrome P450: a theoretical gauging.
    Ogliaro F; de Visser SP; Shaik S
    J Inorg Biochem; 2002 Sep; 91(4):554-67. PubMed ID: 12237222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structures and spectroscopic signatures of diiron intermediates generated by O
    Ekanayake DM; Pham D; Probst AL; Miller JR; Popescu CV; Fiedler AT
    Dalton Trans; 2021 Oct; 50(40):14432-14443. PubMed ID: 34570147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray absorption near edge studies of cytochrome P-450-CAM, chloroperoxidase, and myoglobin. Direct evidence for the electron releasing character of a cysteine thiolate proximal ligand.
    Liu HI; Sono M; Kadkhodayan S; Hager LP; Hedman B; Hodgson KO; Dawson JH
    J Biol Chem; 1995 May; 270(18):10544-50. PubMed ID: 7737989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.