These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 32452715)
1. Bone regeneration in rabbit calvarial defects using PRGF and adipose-derived stem cells: histomorphometrical analysis. Stumbras A; Kuliesius P; Darinskas A; Kubilius R; Zigmantaite V; Juodzbalys G Regen Med; 2020 Apr; 15(4):1535-1549. PubMed ID: 32452715 [No Abstract] [Full Text] [Related]
2. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. Wang Z; Han L; Sun T; Wang W; Li X; Wu B J Biomed Mater Res A; 2021 Apr; 109(4):538-550. PubMed ID: 32515158 [TBL] [Abstract][Full Text] [Related]
3. Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering. Cheng G; Ma X; Li J; Cheng Y; Cao Y; Wang Z; Shi X; Du Y; Deng H; Li Z Int J Pharm; 2018 Aug; 547(1-2):656-666. PubMed ID: 29886100 [TBL] [Abstract][Full Text] [Related]
4. Repair of bone defects in rat radii with a composite of allogeneic adipose-derived stem cells and heterogeneous deproteinized bone. Liu J; Zhou P; Long Y; Huang C; Chen D Stem Cell Res Ther; 2018 Mar; 9(1):79. PubMed ID: 29587852 [TBL] [Abstract][Full Text] [Related]
5. Combined plasma rich in growth factors and adipose-derived mesenchymal stem cells promotes the cutaneous wound healing in rabbits. Chicharro D; Carrillo JM; Rubio M; Cugat R; Cuervo B; Guil S; Forteza J; Moreno V; Vilar JM; Sopena J BMC Vet Res; 2018 Sep; 14(1):288. PubMed ID: 30241533 [TBL] [Abstract][Full Text] [Related]
6. Incorporating platelet-rich plasma into electrospun scaffolds for tissue engineering applications. Sell SA; Wolfe PS; Ericksen JJ; Simpson DG; Bowlin GL Tissue Eng Part A; 2011 Nov; 17(21-22):2723-37. PubMed ID: 21679135 [TBL] [Abstract][Full Text] [Related]
7. Assessment of Bone Regeneration Using Adipose-Derived Stem Cells in Critical-Size Alveolar Ridge Defects: An Experimental Study in a Dog Model. Alvira-González J; Sánchez-Garcés MÀ; Cairó JR; Del Pozo MR; Sánchez CM; Gay-Escoda C Int J Oral Maxillofac Implants; 2016; 31(1):196-203. PubMed ID: 26800179 [TBL] [Abstract][Full Text] [Related]
8. Expansion and delivery of adipose-derived mesenchymal stem cells on three microcarriers for soft tissue regeneration. Zhou Y; Yan Z; Zhang H; Lu W; Liu S; Huang X; Luo H; Jin Y Tissue Eng Part A; 2011 Dec; 17(23-24):2981-97. PubMed ID: 21875329 [TBL] [Abstract][Full Text] [Related]
9. The use of plasma rich in growth factors (PRGF) in guided tissue regeneration and guided bone regeneration. A review of histological, immunohistochemical, histomorphometrical, radiological and clinical results in humans. Solakoglu Ö; Heydecke G; Amiri N; Anitua E Ann Anat; 2020 Sep; 231():151528. PubMed ID: 32376297 [TBL] [Abstract][Full Text] [Related]
10. Bone Regeneration with a Combination of Adipose-Derived Stem Cells and Platelet-Rich Plasma. Tajima S; Tobita M; Mizuno H Methods Mol Biol; 2018; 1773():261-272. PubMed ID: 29687395 [TBL] [Abstract][Full Text] [Related]
11. The effects of oyster shell/alpha-calcium sulfate hemihydrate/platelet-rich plasma/bone mesenchymal stem cells bioengineering scaffold on rat critical-sized calvarial defects. Wang J; Xie L; Wang X; Zheng W; Chen H; Cai L; Chen L J Mater Sci Mater Med; 2020 Oct; 31(11):96. PubMed ID: 33128637 [TBL] [Abstract][Full Text] [Related]
12. In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Yoon E; Dhar S; Chun DE; Gharibjanian NA; Evans GR Tissue Eng; 2007 Mar; 13(3):619-27. PubMed ID: 17518608 [TBL] [Abstract][Full Text] [Related]
13. Mesenchymal stem cells modifications for enhanced bone targeting and bone regeneration. Safarova Y; Umbayev B; Hortelano G; Askarova S Regen Med; 2020 Apr; 15(4):1579-1594. PubMed ID: 32297546 [TBL] [Abstract][Full Text] [Related]
14. Plasma rich in growth factors and bone formation: a radiological and histomorphometric study in New Zealand rabbits. Molina-Miñano F; López-Jornet P; Camacho-Alonso F; Vicente-Ortega V Braz Oral Res; 2009; 23(3):275-80. PubMed ID: 19893962 [TBL] [Abstract][Full Text] [Related]
15. Randomized and Controlled Clinical Trial of Bone Healing After Alveolar Ridge Preservation Using Xenografts and Allografts Versus Plasma Rich in Growth Factors. Stumbras A; Januzis G; Gervickas A; Kubilius R; Juodzbalys G J Oral Implantol; 2020 Oct; 46(5):515-525. PubMed ID: 32315435 [TBL] [Abstract][Full Text] [Related]
16. Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. Petridis X; Diamanti E; Trigas GCh; Kalyvas D; Kitraki E J Craniomaxillofac Surg; 2015 May; 43(4):483-90. PubMed ID: 25753474 [TBL] [Abstract][Full Text] [Related]
17. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
18. Gingival mesenchymal stem cells as an alternative source to bone marrow mesenchymal stem cells in regeneration of bone defects: In vivo study. Al-Qadhi G; Soliman M; Abou-Shady I; Rashed L Tissue Cell; 2020 Apr; 63():101325. PubMed ID: 32223954 [TBL] [Abstract][Full Text] [Related]
19. A possible injectable tissue engineered nucleus pulposus constructed with platelet-rich plasma and ADSCs in vitro. Zhang Z; Ma J; Ren D; Li F J Orthop Surg Res; 2020 Aug; 15(1):311. PubMed ID: 32771036 [TBL] [Abstract][Full Text] [Related]
20. Platelet rich plasma enhances osteoconductive properties of a hydroxyapatite-β-tricalcium phosphate scaffold (Skelite) for late healing of critical size rabbit calvarial defects. El Backly RM; Zaky SH; Canciani B; Saad MM; Eweida AM; Brun F; Tromba G; Komlev VS; Mastrogiacomo M; Marei MK; Cancedda R J Craniomaxillofac Surg; 2014 Jul; 42(5):e70-9. PubMed ID: 23932544 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]