These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 32452815)
1. Augmented Reality-Based Rehabilitation of Gait Impairments: Case Report. Held JPO; Yu K; Pyles C; Veerbeek JM; Bork F; Heining SM; Navab N; Luft AR JMIR Mhealth Uhealth; 2020 May; 8(5):e17804. PubMed ID: 32452815 [TBL] [Abstract][Full Text] [Related]
2. Validity of Hololens Augmented Reality Head Mounted Display for Measuring Gait Parameters in Healthy Adults and Children with Cerebral Palsy. Guinet AL; Bouyer G; Otmane S; Desailly E Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920452 [TBL] [Abstract][Full Text] [Related]
3. Robotic arm training in neurorehabilitation enhanced by augmented reality - a usability and feasibility study. de Crignis AC; Ruhnau ST; Hösl M; Lefint J; Amberger T; Dressnandt J; Brunner H; Müller F J Neuroeng Rehabil; 2023 Aug; 20(1):105. PubMed ID: 37568195 [TBL] [Abstract][Full Text] [Related]
4. A Wearable Mixed Reality Platform to Augment Overground Walking: A Feasibility Study. Evans E; Dass M; Muter WM; Tuthill C; Tan AQ; Trumbower RD Front Hum Neurosci; 2022; 16():868074. PubMed ID: 35754777 [TBL] [Abstract][Full Text] [Related]
5. Visually-guided gait training in paretic patients during the first rehabilitation phase: study protocol for a randomized controlled trial. Rossano C; Terrier P Trials; 2016 Oct; 17(1):523. PubMed ID: 27788679 [TBL] [Abstract][Full Text] [Related]
6. Effects of gait adaptation training on augmented reality treadmill for patients with stroke in community ambulation. Yang H; Gao Z; Zhou Y; Liao Z; Song C; Mao Y Int J Qual Health Care; 2024 Feb; 36(1):. PubMed ID: 38334696 [TBL] [Abstract][Full Text] [Related]
7. Walking with head-mounted virtual and augmented reality devices: Effects on position control and gait biomechanics. Chan ZYS; MacPhail AJC; Au IPH; Zhang JH; Lam BMF; Ferber R; Cheung RTH PLoS One; 2019; 14(12):e0225972. PubMed ID: 31800637 [TBL] [Abstract][Full Text] [Related]
8. Autonomous rehabilitation at stroke patients home for balance and gait: safety, usability and compliance of a virtual reality system. Held JP; Ferrer B; Mainetti R; Steblin A; Hertler B; Moreno-Conde A; Dueñas A; Pajaro M; Parra-Calderón CL; Vargiu E; Josè Zarco M; Barrera M; Echevarria C; Jódar-Sánchez F; Luft AR; Borghese NA Eur J Phys Rehabil Med; 2018 Aug; 54(4):545-553. PubMed ID: 28949120 [TBL] [Abstract][Full Text] [Related]
9. Remotely prescribed, monitored, and tailored home-based gait-and-balance exergaming using augmented reality glasses: a clinical feasibility study in people with Parkinson's disease. Hardeman LES; Geerse DJ; Hoogendoorn EM; Nonnekes J; Roerdink M Front Neurol; 2024; 15():1373740. PubMed ID: 38872812 [TBL] [Abstract][Full Text] [Related]
10. Virtual reality gait training versus non-virtual reality gait training for improving participation in subacute stroke survivors: study protocol of the ViRTAS randomized controlled trial. de Rooij IJM; van de Port IGL; Visser-Meily JMA; Meijer JG Trials; 2019 Jan; 20(1):89. PubMed ID: 30696491 [TBL] [Abstract][Full Text] [Related]
11. Augmented Reality Feedback for Exoskeleton-Assisted Walking. A Feasibility Study. Pinto-Fernandez D; Gomez M; Rodrigues C; Rojo A; Raya R; Rocon E; Moreno JC; Torricelli D IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941171 [TBL] [Abstract][Full Text] [Related]
12. Remotely prescribed and monitored home-based gait-and-balance therapeutic exergaming using augmented reality (AR) glasses: protocol for a clinical feasibility study in people with Parkinson's disease. Hardeman LES; Geerse DJ; Hoogendoorn EM; Nonnekes J; Roerdink M Pilot Feasibility Stud; 2024 Mar; 10(1):54. PubMed ID: 38539250 [TBL] [Abstract][Full Text] [Related]
13. Evaluating the effect of immersive virtual reality technology on gait rehabilitation in stroke patients: a study protocol for a randomized controlled trial. Cai H; Lin T; Chen L; Weng H; Zhu R; Chen Y; Cai G Trials; 2021 Jan; 22(1):91. PubMed ID: 33494805 [TBL] [Abstract][Full Text] [Related]
14. Attitudes towards a sensor-feedback technology in gait rehabilitation of patients after stroke. Nieboer M; Jie LJ; Willemse L; Peek S; Braun S; Wouters E Disabil Rehabil Assist Technol; 2023 Aug; 18(6):889-895. PubMed ID: 34263711 [TBL] [Abstract][Full Text] [Related]
15. Holographic Hintways: A systems feasibility and usability study of augmented reality cueing for gait adaptation. Retzinger GR; Golbarg B; Pham WT; Lachica IJ; Chan T; Hinkel-Lipsker JW Gait Posture; 2024 Jan; 107():218-224. PubMed ID: 37838588 [TBL] [Abstract][Full Text] [Related]
16. Augmented reality for stroke rehabilitation during COVID-19. Yang ZQ; Du D; Wei XY; Tong RK J Neuroeng Rehabil; 2022 Dec; 19(1):136. PubMed ID: 36482468 [TBL] [Abstract][Full Text] [Related]
17. Sensorimotor enhancement with a mixed reality system for balance and mobility rehabilitation. Fung J; Perez CF Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6753-7. PubMed ID: 22255889 [TBL] [Abstract][Full Text] [Related]
18. A Quality of Experience assessment of haptic and augmented reality feedback modalities in a gait analysis system. Braga Rodrigues T; Ó Catháin C; O'Connor NE; Murray N PLoS One; 2020; 15(3):e0230570. PubMed ID: 32203533 [TBL] [Abstract][Full Text] [Related]
19. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. Corbetta D; Imeri F; Gatti R J Physiother; 2015 Jul; 61(3):117-24. PubMed ID: 26093805 [TBL] [Abstract][Full Text] [Related]
20. The use of augmented reality for rehabilitation after stroke: a narrative review. Gorman C; Gustafsson L Disabil Rehabil Assist Technol; 2022 May; 17(4):409-417. PubMed ID: 32663112 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]