These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
391 related articles for article (PubMed ID: 32452815)
21. Exoskeletons With Virtual Reality, Augmented Reality, and Gamification for Stroke Patients' Rehabilitation: Systematic Review. Mubin O; Alnajjar F; Jishtu N; Alsinglawi B; Al Mahmud A JMIR Rehabil Assist Technol; 2019 Sep; 6(2):e12010. PubMed ID: 31586360 [TBL] [Abstract][Full Text] [Related]
22. Virtual walking training program using a real-world video recording for patients with chronic stroke: a pilot study. Cho KH; Lee WH Am J Phys Med Rehabil; 2013 May; 92(5):371-80; quiz 380-2, 458. PubMed ID: 23598900 [TBL] [Abstract][Full Text] [Related]
23. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Lloréns R; Gil-Gómez JA; Alcañiz M; Colomer C; Noé E Clin Rehabil; 2015 Mar; 29(3):261-8. PubMed ID: 25056999 [TBL] [Abstract][Full Text] [Related]
24. Clinical Practice Guideline to Improve Locomotor Function Following Chronic Stroke, Incomplete Spinal Cord Injury, and Brain Injury. Hornby TG; Reisman DS; Ward IG; Scheets PL; Miller A; Haddad D; Fox EJ; Fritz NE; Hawkins K; Henderson CE; Hendron KL; Holleran CL; Lynskey JE; Walter A; J Neurol Phys Ther; 2020 Jan; 44(1):49-100. PubMed ID: 31834165 [TBL] [Abstract][Full Text] [Related]
25. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar. Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824 [TBL] [Abstract][Full Text] [Related]
26. Gait training with virtual reality-based real-time feedback: improving gait performance following transfemoral amputation. Darter BJ; Wilken JM Phys Ther; 2011 Sep; 91(9):1385-94. PubMed ID: 21757579 [TBL] [Abstract][Full Text] [Related]
27. Virtual reality-enhanced partial body weight-supported treadmill training poststroke: feasibility and effectiveness in 6 subjects. Walker ML; Ringleb SI; Maihafer GC; Walker R; Crouch JR; Van Lunen B; Morrison S Arch Phys Med Rehabil; 2010 Jan; 91(1):115-22. PubMed ID: 20103405 [TBL] [Abstract][Full Text] [Related]
28. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
29. Towards Wearable Augmented Reality in Healthcare: A Comparative Survey and Analysis of Head-Mounted Displays. Baashar Y; Alkawsi G; Wan Ahmad WN; Alomari MA; Alhussian H; Tiong SK Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900951 [TBL] [Abstract][Full Text] [Related]
30. Using augmented reality technology for balance training in the older adults: a feasibility pilot study. Blomqvist S; Seipel S; Engström M BMC Geriatr; 2021 Feb; 21(1):144. PubMed ID: 33637043 [TBL] [Abstract][Full Text] [Related]
31. Overground Walking in a Fully Immersive Virtual Reality: A Comprehensive Study on the Effects on Full-Body Walking Biomechanics. Horsak B; Simonlehner M; Schöffer L; Dumphart B; Jalaeefar A; Husinsky M Front Bioeng Biotechnol; 2021; 9():780314. PubMed ID: 34957075 [TBL] [Abstract][Full Text] [Related]
32. Effects of viewing distance and age on the performance and symptoms in a visual search task in augmented reality. Huang YY; Menozzi M Appl Ergon; 2022 Jul; 102():103746. PubMed ID: 35290897 [TBL] [Abstract][Full Text] [Related]
33. Augmented Virtual Reality in Vestibular Assessment: A Dynamic Gait Application. Margani V; Pascucci S; Talamonti R; Serani E; Bini F; Marinozzi F; Volpini L; Elfarargy HH; Covelli E; Barbara M Audiol Neurootol; 2023; 28(4):308-316. PubMed ID: 37071980 [TBL] [Abstract][Full Text] [Related]
34. Feasibility of training using full immersion virtual reality video game in young stroke survivor: A case report. Park S; Lee D; Hong S; Cho K; Lee G NeuroRehabilitation; 2021; 48(1):1-8. PubMed ID: 33361614 [TBL] [Abstract][Full Text] [Related]
35. Integrated Gait Triggered Mixed Reality and Neurophysiological Monitoring as a Framework for Next-Generation Ambulatory Stroke Rehabilitation. Ko LW; Stevenson C; Chang WC; Yu KH; Chi KC; Chen YJ; Chen CH IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2435-2444. PubMed ID: 34748494 [TBL] [Abstract][Full Text] [Related]
36. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Bergmann J; Krewer C; Bauer P; Koenig A; Riener R; Müller F Eur J Phys Rehabil Med; 2018 Jun; 54(3):397-407. PubMed ID: 29265791 [TBL] [Abstract][Full Text] [Related]
37. The Microsoft HoloLens 2 Provides Accurate Measures of Gait, Turning, and Functional Mobility in Healthy Adults. Miller Koop M; Rosenfeldt AB; Owen K; Penko AL; Streicher MC; Albright A; Alberts JL Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271156 [TBL] [Abstract][Full Text] [Related]
38. Virtual Reality Reflection Therapy Improves Balance and Gait in Patients with Chronic Stroke: Randomized Controlled Trials. In T; Lee K; Song C Med Sci Monit; 2016 Oct; 22():4046-4053. PubMed ID: 27791207 [TBL] [Abstract][Full Text] [Related]
39. Assessing walking adaptability in stroke patients. Geerse DJ; Roerdink M; Marinus J; van Hilten JJ Disabil Rehabil; 2021 Nov; 43(22):3242-3250. PubMed ID: 32186408 [TBL] [Abstract][Full Text] [Related]
40. Walking adaptability therapy after stroke: study protocol for a randomized controlled trial. Timmermans C; Roerdink M; van Ooijen MW; Meskers CG; Janssen TW; Beek PJ Trials; 2016 Aug; 17(1):425. PubMed ID: 27565425 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]