BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 32453027)

  • 1. Brainstem correlates of cochlear nonlinearity measured via the scalp-recorded frequency-following response.
    Bidelman GM; Bhagat S
    Neuroreport; 2020 Jul; 31(10):702-707. PubMed ID: 32453027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subcortical rather than cortical sources of the frequency-following response (FFR) relate to speech-in-noise perception in normal-hearing listeners.
    Bidelman GM; Momtaz S
    Neurosci Lett; 2021 Feb; 746():135664. PubMed ID: 33497718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocochleographic frequency-following responses as a potential marker of age-related cochlear neural degeneration.
    Temboury-Gutierrez M; Märcher-Rørsted J; Bille M; Yde J; Encina-Llamas G; Hjortkjær J; Dau T
    Hear Res; 2024 May; 446():109005. PubMed ID: 38598943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the relationship between physiological measures of cochlear and brainstem function.
    Dhar S; Abel R; Hornickel J; Nicol T; Skoe E; Zhao W; Kraus N
    Clin Neurophysiol; 2009 May; 120(5):959-66. PubMed ID: 19346159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weakened Cochlear Nonlinearity During Human Aging and Perceptual Correlates.
    Abdala C; Ortmann AJ; Guardia YC
    Ear Hear; 2021; 42(4):832-845. PubMed ID: 33886169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory models of suprathreshold distortion and speech intelligibility in persons with impaired hearing.
    Bernstein JG; Summers V; Grassi E; Grant KW
    J Am Acad Audiol; 2013 Apr; 24(4):307-28. PubMed ID: 23636211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced brainstem phase-locking in low-level noise reveals stochastic resonance in the frequency-following response (FFR).
    Shukla B; Bidelman GM
    Brain Res; 2021 Nov; 1771():147643. PubMed ID: 34473999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between speech-evoked auditory brainstem responses and transient evoked otoacoustic emissions.
    Rana B; Barman A
    J Laryngol Otol; 2011 Sep; 125(9):911-6. PubMed ID: 21729428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response properties of the human frequency-following response (FFR) to speech and non-speech sounds: level dependence, adaptation and phase-locking limits.
    Bidelman G; Powers L
    Int J Audiol; 2018 Sep; 57(9):665-672. PubMed ID: 29764252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Middle Ear Muscle Reflex and Word Recognition in "Normal-Hearing" Adults: Evidence for Cochlear Synaptopathy?
    Mepani AM; Kirk SA; Hancock KE; Bennett K; de Gruttola V; Liberman MC; Maison SF
    Ear Hear; 2020; 41(1):25-38. PubMed ID: 31584501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dichotic phase effects on frequency following responses reveal phase variant and invariant harmonic distortion products.
    Gnanateja GN; Maruthy S
    Hear Res; 2019 Sep; 380():84-99. PubMed ID: 31212114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual differences in the attentional modulation of the human auditory brainstem response to speech inform on speech-in-noise deficits.
    Saiz-Alía M; Forte AE; Reichenbach T
    Sci Rep; 2019 Oct; 9(1):14131. PubMed ID: 31575950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identifying three otopathologies in humans.
    Parker MA
    Hear Res; 2020 Dec; 398():108079. PubMed ID: 33011456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating peripheral sources of speech-in-noise variability in listeners with normal audiograms.
    Smith SB; Krizman J; Liu C; White-Schwoch T; Nicol T; Kraus N
    Hear Res; 2019 Jan; 371():66-74. PubMed ID: 30504092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory-cognitive interaction in the neural encoding of speech in noise: a review.
    Anderson S; Kraus N
    J Am Acad Audiol; 2010 Oct; 21(9):575-85. PubMed ID: 21241645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation.
    Santarelli R; Rossi R; Scimemi P; Cama E; Valentino ML; La Morgia C; Caporali L; Liguori R; Magnavita V; Monteleone A; Biscaro A; Arslan E; Carelli V
    Brain; 2015 Mar; 138(Pt 3):563-76. PubMed ID: 25564500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging degrades the neural encoding of simple and complex sounds in the human brainstem.
    Clinard CG; Tremblay KL
    J Am Acad Audiol; 2013; 24(7):590-9; quiz 643-4. PubMed ID: 24047946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.