BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32453071)

  • 1. The Small Conductance Calcium-Activated Potassium Channel Inhibitors NS8593 and UCL1684 Prevent the Development of Atrial Fibrillation Through Atrial-Selective Inhibition of Sodium Channel Activity.
    Burashnikov A; Barajas-Martinez H; Hu D; Robinson VM; Grunnet M; Antzelevitch C
    J Cardiovasc Pharmacol; 2020 Aug; 76(2):164-172. PubMed ID: 32453071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of small-conductance Ca2+-activated K+ channels terminates and protects against atrial fibrillation.
    Diness JG; Sørensen US; Nissen JD; Al-Shahib B; Jespersen T; Grunnet M; Hansen RS
    Circ Arrhythm Electrophysiol; 2010 Aug; 3(4):380-90. PubMed ID: 20562443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pharmacologic inhibition of small-conductance calcium-activated potassium (SK) channels by NS8593 reveals atrial antiarrhythmic potential in horses.
    Haugaard MM; Hesselkilde EZ; Pehrson S; Carstensen H; Flethøj M; Præstegaard KF; Sørensen US; Diness JG; Grunnet M; Buhl R; Jespersen T
    Heart Rhythm; 2015 Apr; 12(4):825-35. PubMed ID: 25542425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects on atrial fibrillation in aged hypertensive rats by Ca(2+)-activated K(+) channel inhibition.
    Diness JG; Skibsbye L; Jespersen T; Bartels ED; Sørensen US; Hansen RS; Grunnet M
    Hypertension; 2011 Jun; 57(6):1129-35. PubMed ID: 21502564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria.
    Skibsbye L; Poulet C; Diness JG; Bentzen BH; Yuan L; Kappert U; Matschke K; Wettwer E; Ravens U; Grunnet M; Christ T; Jespersen T
    Cardiovasc Res; 2014 Jul; 103(1):156-67. PubMed ID: 24817686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of IKr potentiates development of atrial-selective INa block leading to effective suppression of atrial fibrillation.
    Burashnikov A; Belardinelli L; Antzelevitch C
    Heart Rhythm; 2015 Apr; 12(4):836-44. PubMed ID: 25546810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atrium-selective sodium channel block as a strategy for suppression of atrial fibrillation: differences in sodium channel inactivation between atria and ventricles and the role of ranolazine.
    Burashnikov A; Di Diego JM; Zygmunt AC; Belardinelli L; Antzelevitch C
    Circulation; 2007 Sep; 116(13):1449-57. PubMed ID: 17785620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of small-conductance calcium-activated potassium channels in atrial electrophysiology and fibrillation in the dog.
    Qi XY; Diness JG; Brundel BJ; Zhou XB; Naud P; Wu CT; Huang H; Harada M; Aflaki M; Dobrev D; Grunnet M; Nattel S
    Circulation; 2014 Jan; 129(4):430-40. PubMed ID: 24190961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atrial-selective prolongation of refractory period with AVE0118 is due principally to inhibition of sodium channel activity.
    Burashnikov A; Barajas-Martinez H; Hu D; Nof E; Blazek J; Antzelevitch C
    J Cardiovasc Pharmacol; 2012 Jun; 59(6):539-46. PubMed ID: 22370957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrial-selective sodium channel block strategy to suppress atrial fibrillation: ranolazine versus propafenone.
    Burashnikov A; Belardinelli L; Antzelevitch C
    J Pharmacol Exp Ther; 2012 Jan; 340(1):161-8. PubMed ID: 22005044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AZD1305 exerts atrial predominant electrophysiological actions and is effective in suppressing atrial fibrillation and preventing its reinduction in the dog.
    Burashnikov A; Zygmunt AC; Di Diego JM; Linhardt G; Carlsson L; Antzelevitch C
    J Cardiovasc Pharmacol; 2010 Jul; 56(1):80-90. PubMed ID: 20386458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranolazine effectively suppresses atrial fibrillation in the setting of heart failure.
    Burashnikov A; Di Diego JM; Barajas-Martínez H; Hu D; Cordeiro JM; Moise NS; Kornreich BG; Belardinelli L; Antzelevitch C
    Circ Heart Fail; 2014 Jul; 7(4):627-33. PubMed ID: 24874201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Late Sodium Current in Atrial Cardiomyocytes Contributes to the Induced and Spontaneous Atrial Fibrillation in Rabbit Hearts.
    Chu Y; Yang Q; Ren L; Yu S; Liu Z; Chen Y; Wei X; Huang S; Song L; Zhang P; Ma J; Wu L
    J Cardiovasc Pharmacol; 2020 Oct; 76(4):437-444. PubMed ID: 32675747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation.
    Baczko I; Liknes D; Yang W; Hamming KC; Searle G; Jaeger K; Husti Z; Juhasz V; Klausz G; Pap R; Saghy L; Varro A; Dolinsky V; Wang S; Rauniyar V; Hall D; Dyck JR; Light PE
    Br J Pharmacol; 2014 Jan; 171(1):92-106. PubMed ID: 24102184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrial-selective inhibition of sodium-channel current by Wenxin Keli is effective in suppressing atrial fibrillation.
    Burashnikov A; Petroski A; Hu D; Barajas-Martinez H; Antzelevitch C
    Heart Rhythm; 2012 Jan; 9(1):125-31. PubMed ID: 21884675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The duration of pacing-induced atrial fibrillation is reduced in vivo by inhibition of small conductance Ca(2+)-activated K(+) channels.
    Skibsbye L; Diness JG; Sørensen US; Hansen RS; Grunnet M
    J Cardiovasc Pharmacol; 2011 Jun; 57(6):672-81. PubMed ID: 21394037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Change in late sodium current of atrial myocytes in spontaneously hypertensive rats with allocryptopine treatment.
    Dong Y; Huang Y; Wu HL; Ke J; Yin YL; Zhu C; Li B; Li J; Gao L; Xue Q; Zhang JC; Li Y
    Cardiovasc J Afr; 2019 Mar/Apr 23; 30(2):79-86. PubMed ID: 30882133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiarrhythmic Mechanisms of SK Channel Inhibition in the Rat Atrium.
    Skibsbye L; Wang X; Axelsen LN; Bomholtz SH; Nielsen MS; Grunnet M; Bentzen BH; Jespersen T
    J Cardiovasc Pharmacol; 2015 Aug; 66(2):165-76. PubMed ID: 25856531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SK channel blockade prevents hypoxia-induced ventricular arrhythmias through inhibition of Ca
    Takahashi M; Yokoshiki H; Mitsuyama H; Watanabe M; Temma T; Kamada R; Hagiwara H; Takahashi Y; Anzai T
    Am J Physiol Heart Circ Physiol; 2021 Apr; 320(4):H1456-H1469. PubMed ID: 33635168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiarrhythmic Effect of Either Negative Modulation or Blockade of Small Conductance Ca2+-activated K+ Channels on Ventricular Fibrillation in Guinea Pig Langendorff-perfused Heart.
    Diness JG; Kirchhoff JE; Sheykhzade M; Jespersen T; Grunnet M
    J Cardiovasc Pharmacol; 2015 Sep; 66(3):294-9. PubMed ID: 25978690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.