These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 32453332)
1. Highly efficient near-infrared BODIPY phototherapeutic nanoparticles for cancer treatment. Zhang Y; Yang Z; Zheng X; Chen L; Xie Z J Mater Chem B; 2020 Jun; 8(24):5305-5311. PubMed ID: 32453332 [TBL] [Abstract][Full Text] [Related]
2. Novel BODIPY-based nano-biomaterials with enhanced D-A-D structure for NIR-triggered photodynamic and photothermal therapy. Chen G; Xiong M; Jiang C; Zhao Y; Chen L; Ju Y; Jiang J; Xu Z; Pan J; Li X; Wang K Bioorg Chem; 2024 Jul; 148():107494. PubMed ID: 38797067 [TBL] [Abstract][Full Text] [Related]
3. Conjugated BODIPY Oligomers with Controllable Near-Infrared Absorptions as Promising Phototheranostic Agents through Excited-State Intramolecular Rotations. Wu Q; Zhu Y; Fang X; Hao X; Jiao L; Hao E; Zhang W ACS Appl Mater Interfaces; 2020 Oct; 12(42):47208-47219. PubMed ID: 33035047 [TBL] [Abstract][Full Text] [Related]
4. Highly Stable and Multifunctional Aza-BODIPY-Based Phototherapeutic Agent for Anticancer Treatment. Xu Y; Zhao M; Zou L; Wu L; Xie M; Yang T; Liu S; Huang W; Zhao Q ACS Appl Mater Interfaces; 2018 Dec; 10(51):44324-44335. PubMed ID: 30508480 [TBL] [Abstract][Full Text] [Related]
5. Inhibiting Radiative Transition-Mediated Multifunctional Polymeric Nanoplatforms for Highly Efficient Tumor Phototherapeutics. Zhu Y; Chen C; Yang G; Wu Q; Tian J; Hao E; Cao H; Gao Y; Zhang W ACS Appl Mater Interfaces; 2020 Oct; 12(40):44523-44533. PubMed ID: 32910635 [TBL] [Abstract][Full Text] [Related]
6. A CuS- and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy. Dong XJ; Li WY; Guan Q; Li YA; Dong YB Chem Commun (Camb); 2022 Feb; 58(14):2387-2390. PubMed ID: 35081192 [TBL] [Abstract][Full Text] [Related]
7. An "all-in-one" strategy based on the organic molecule DCN-4CQA for effective NIR-fluorescence-imaging-guided dual phototherapy. Li L; Liu Y; Sun T; Zhou T; Bai Y; Liu X; Zhang S; Jia T; Zhao X; Wang Y J Mater Chem B; 2021 Jul; 9(29):5785-5793. PubMed ID: 34190308 [TBL] [Abstract][Full Text] [Related]
8. Aza-BODIPY Probe-Decorated Mesoporous Black TiO Liu N; Zhu M; Niu N; Ren J; Yang N; Yu C ACS Appl Mater Interfaces; 2020 Sep; 12(37):41071-41078. PubMed ID: 32806896 [TBL] [Abstract][Full Text] [Related]
9. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for Liao Y; Wang R; Wang S; Xie Y; Chen H; Huang R; Shao L; Zhu Q; Liu Y ACS Appl Mater Interfaces; 2021 Nov; 13(46):54783-54793. PubMed ID: 34763423 [TBL] [Abstract][Full Text] [Related]
10. Helical BODIPY Dyes as Heavy-Atom-Free Triplet Photosensitizers for Photodynamic Therapy of Cancer. Mula S; Koli M ChemMedChem; 2024 Jun; 19(11):e202400041. PubMed ID: 38359274 [TBL] [Abstract][Full Text] [Related]
11. Ubiquinone-BODIPY nanoparticles for tumor redox-responsive fluorescence imaging and photodynamic activity. Hwang B; Kim TI; Kim H; Jeon S; Choi Y; Kim Y J Mater Chem B; 2021 Jan; 9(3):824-831. PubMed ID: 33338098 [TBL] [Abstract][Full Text] [Related]
12. Biotin-decorated NIR-absorbing nanosheets for targeted photodynamic cancer therapy. Perumal D; Golla M; Pillai KS; Raj G; Krishna P K A; Varghese R Org Biomol Chem; 2021 Mar; 19(12):2804-2810. PubMed ID: 33720265 [TBL] [Abstract][Full Text] [Related]
13. Acceptor-donor-acceptor-type molecules with large electrostatic potential difference for effective NIR photothermal therapy. Fan K; Zhang L; Zhong Q; Xiang Y; Xu B; Wang Y J Mater Chem B; 2024 May; 12(21):5140-5149. PubMed ID: 38712564 [TBL] [Abstract][Full Text] [Related]
14. Double pH-sensitive nanotheranostics of polypeptide nanoparticle encapsulated BODIPY with both NIR activated fluorescence and enhanced photodynamic therapy. Dang H; Cheng Q; Tian Y; Teng C; Xie K; Yan L J Mater Chem B; 2021 Nov; 9(42):8871-8881. PubMed ID: 34693964 [TBL] [Abstract][Full Text] [Related]
15. Mitochondria-targeting BODIPY-loaded micelles as novel class of photosensitizer for photodynamic therapy. Li M; Li X; Cao Z; Wu Y; Chen JA; Gao J; Wang Z; Guo W; Gu X Eur J Med Chem; 2018 Sep; 157():599-609. PubMed ID: 30125721 [TBL] [Abstract][Full Text] [Related]
16. Constructing Heavy-Atom-Free Photosensitizers for Hypoxic Tumor Phototherapy Based on Donor-Excited Photoinduced Electron-Transfer-Driven Type-I and Type-II Mechanisms. Miao J; Yao G; Huo Y; Wang B; Zhao W; Guo W ACS Appl Mater Interfaces; 2024 Aug; 16(31):40428-40443. PubMed ID: 39042585 [TBL] [Abstract][Full Text] [Related]
17. Mitochondria-Targeted BODIPY Nanoparticles for Enhanced Photothermal and Photoacoustic Imaging In Vivo. Wang JL; Zhang L; Zhao MJ; Zhang T; Liu Y; Jiang FL ACS Appl Bio Mater; 2021 Feb; 4(2):1760-1770. PubMed ID: 35014522 [TBL] [Abstract][Full Text] [Related]
18. Near-infrared BODIPY photosensitizers for two-photon excited singlet oxygen generation and tumor cell photodynamic therapy. Liu R; Qian Y Org Biomol Chem; 2024 Jul; 22(27):5569-5577. PubMed ID: 38887040 [TBL] [Abstract][Full Text] [Related]
19. The tumor phototherapeutic application of nanoparticles constructed by the relationship between PTT/PDT efficiency and 2,6- and 3,5-substituted BODIPY derivatives. Yin J; Jiang X; Sui G; Du Y; Xing E; Shi R; Gu C; Wen X; Feng Y; Shan Z; Meng S J Mater Chem B; 2021 Sep; 9(36):7461-7471. PubMed ID: 34551049 [TBL] [Abstract][Full Text] [Related]
20. BODIPY-Ruthenium(II) Bis-Terpyridine Complexes for Cellular Imaging and Type-I/-II Photodynamic Therapy. Paul S; Kundu P; Kondaiah P; Chakravarty AR Inorg Chem; 2021 Nov; 60(21):16178-16193. PubMed ID: 34672556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]