BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 32453547)

  • 1. Room Temperature Weak-to-Strong Coupling and the Emergence of Collective Emission from Quantum Dots Coupled to Plasmonic Arrays.
    Yadav RK; Bourgeois MR; Cherqui C; Juarez XG; Wang W; Odom TW; Schatz GC; Basu JK
    ACS Nano; 2020 Jun; 14(6):7347-7357. PubMed ID: 32453547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facet-Oriented Coupling Enables Fast and Sensitive Colloidal Quantum Dot Photodetectors.
    Biondi M; Choi MJ; Wang Z; Wei M; Lee S; Choubisa H; Sagar LK; Sun B; Baek SW; Chen B; Todorović P; Najarian AM; Sedighian Rasouli A; Nam DH; Vafaie M; Li YC; Bertens K; Hoogland S; Voznyy O; García de Arquer FP; Sargent EH
    Adv Mater; 2021 Aug; 33(33):e2101056. PubMed ID: 34245178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observation and Active Control of a Collective Polariton Mode and Polaritonic Band Gap in Few-Layer WS
    Liu W; Wang Y; Zheng B; Hwang M; Ji Z; Liu G; Li Z; Sorger VJ; Pan A; Agarwal R
    Nano Lett; 2020 Jan; 20(1):790-798. PubMed ID: 31846342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
    Liu W; Lee B; Naylor CH; Ee HS; Park J; Johnson AT; Agarwal R
    Nano Lett; 2016 Feb; 16(2):1262-9. PubMed ID: 26784532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring charge carrier diffusion in coupled colloidal quantum dot solids.
    Zhitomirsky D; Voznyy O; Hoogland S; Sargent EH
    ACS Nano; 2013 Jun; 7(6):5282-90. PubMed ID: 23701285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong plasmon-exciton coupling in transition metal dichalcogenides and plasmonic nanostructures.
    Sun J; Li Y; Hu H; Chen W; Zheng D; Zhang S; Xu H
    Nanoscale; 2021 Mar; 13(8):4408-4419. PubMed ID: 33605947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons.
    Leng H; Szychowski B; Daniel MC; Pelton M
    Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acid-Assisted Ligand Exchange Enhances Coupling in Colloidal Quantum Dot Solids.
    Jo JW; Choi J; García de Arquer FP; Seifitokaldani A; Sun B; Kim Y; Ahn H; Fan J; Quintero-Bermudez R; Kim J; Choi MJ; Baek SW; Proppe AH; Walters G; Nam DH; Kelley S; Hoogland S; Voznyy O; Sargent EH
    Nano Lett; 2018 Jul; 18(7):4417-4423. PubMed ID: 29912564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous emission modulation of colloidal quantum dots via efficient coupling with hybrid plasmonic photonic crystal.
    Yuan XW; Shi L; Wang Q; Chen CQ; Liu XH; Sun LX; Zhang B; Zi J; Lu W
    Opt Express; 2014 Sep; 22(19):23473-9. PubMed ID: 25321816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collective Strong Light-Matter Coupling in Hierarchical Microcavity-Plasmon-Exciton Systems.
    Bisht A; Cuadra J; Wersäll M; Canales A; Antosiewicz TJ; Shegai T
    Nano Lett; 2019 Jan; 19(1):189-196. PubMed ID: 30500202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lattice anchoring stabilizes solution-processed semiconductors.
    Liu M; Chen Y; Tan CS; Quintero-Bermudez R; Proppe AH; Munir R; Tan H; Voznyy O; Scheffel B; Walters G; Kam APT; Sun B; Choi MJ; Hoogland S; Amassian A; Kelley SO; García de Arquer FP; Sargent EH
    Nature; 2019 Jun; 570(7759):96-101. PubMed ID: 31118515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemiluminescence and Photoluminescence of Carbon Quantum Dots Controlled by Aggregation-Induced Emission, Aggregation-Caused Quenching, and Interfacial Reactions.
    Adsetts JR; Hoesterey S; Gao C; Love DA; Ding Z
    Langmuir; 2020 Dec; 36(47):14432-14442. PubMed ID: 33207119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Quantum Dot Light Emitting Diodes at Telecom Wavelength with 18% Quantum Efficiency and Over 1 MHz Bandwidth.
    Pradhan S; Dalmases M; Taghipour N; Kundu B; Konstantatos G
    Adv Sci (Weinh); 2022 Jul; 9(20):e2200637. PubMed ID: 35508607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Dot-Plasmon Lasing with Controlled Polarization Patterns.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Wang W; Watkins N; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; de Pina JM; Schaller RD; Schatz GC; Sargent EH; Odom TW
    ACS Nano; 2020 Mar; 14(3):3426-3433. PubMed ID: 32049478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field strong coupling of single quantum dots.
    Groß H; Hamm JM; Tufarelli T; Hess O; Hecht B
    Sci Adv; 2018 Mar; 4(3):eaar4906. PubMed ID: 29511739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas.
    Giannini V; Vecchi G; Rivas JG
    Phys Rev Lett; 2010 Dec; 105(26):266801. PubMed ID: 21231697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-Assisted Reconstruction of Colloidal Quantum Dots Decreases Trap State Density.
    Sun B; Vafaie M; Levina L; Wei M; Dong Y; Gao Y; Kung HT; Biondi M; Proppe AH; Chen B; Choi MJ; Sagar LK; Voznyy O; Kelley SO; Laquai F; Lu ZH; Hoogland S; García de Arquer FP; Sargent EH
    Nano Lett; 2020 May; 20(5):3694-3702. PubMed ID: 32227970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-Assisted Suppression of Surface Trap States and Enhanced Band-Edge Emission in a Bare CdTe Quantum Dot.
    Flatae AM; Tantussi F; Messina GC; De Angelis F; Agio M
    J Phys Chem Lett; 2019 Jun; 10(11):2874-2878. PubMed ID: 31084012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.