BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32453658)

  • 21. Using Google Flu Trends data in forecasting influenza-like-illness related ED visits in Omaha, Nebraska.
    Araz OM; Bentley D; Muelleman RL
    Am J Emerg Med; 2014 Sep; 32(9):1016-23. PubMed ID: 25037278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system.
    Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A
    BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic Forecasting of Zika Epidemics Using Google Trends.
    Teng Y; Bi D; Xie G; Jin Y; Huang Y; Lin B; An X; Feng D; Tong Y
    PLoS One; 2017; 12(1):e0165085. PubMed ID: 28060809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China.
    Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y
    Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework.
    Wang Y; Xu C; Ren J; Wu W; Zhao X; Chao L; Liang W; Yao S
    Infect Drug Resist; 2020; 13():733-747. PubMed ID: 32184635
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Good times bad times: Automated forecasting of seasonal cryptosporidiosis in Ontario using machine learning.
    Berke O; Trotz-Williams L; de Montigny S
    Can Commun Dis Rep; 2020 Jun; 46(6):192-197. PubMed ID: 32673377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forecasting deaths of road traffic injuries in China using an artificial neural network.
    Qian Y; Zhang X; Fei G; Sun Q; Li X; Stallones L; Xiang H
    Traffic Inj Prev; 2020; 21(6):407-412. PubMed ID: 32500738
    [No Abstract]   [Full Text] [Related]  

  • 28. Statistical methods for predicting tuberculosis incidence based on data from Guangxi, China.
    Zheng Y; Zhang L; Wang L; Rifhat R
    BMC Infect Dis; 2020 Apr; 20(1):300. PubMed ID: 32321419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predictive study of tuberculosis incidence by time series method and Elman neural network in Kashgar, China.
    Zheng Y; Zhang X; Wang X; Wang K; Cui Y
    BMJ Open; 2021 Jan; 11(1):e041040. PubMed ID: 33478962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Time series model for forecasting the number of new admission inpatients.
    Zhou L; Zhao P; Wu D; Cheng C; Huang H
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):39. PubMed ID: 29907102
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Forecasting HFMD Cases Using Weather Variables and Google Search Queries in Sabah, Malaysia.
    Jayaraj VJ; Hoe VCW
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of Conventional Modeling Techniques with the Neural Network Autoregressive Model (NNAR): Application to COVID-19 Data.
    Daniyal M; Tawiah K; Muhammadullah S; Opoku-Ameyaw K
    J Healthc Eng; 2022; 2022():4802743. PubMed ID: 35747601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Forecasting Trends in the Tuberculosis Epidemic Situation in the Region of the Russian Federation by Dynamic Simulation Model.
    Cherniaev IA; Chernavin PF; Tsvetkov AI; Chugaev YP; Cherniaeva UI; Chernavin NP
    Stud Health Technol Inform; 2022 Nov; 299():235-241. PubMed ID: 36325869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of autoregressive integrated moving average model and generalised regression neural network model for prediction of haemorrhagic fever with renal syndrome in China: a time-series study.
    Wang YW; Shen ZZ; Jiang Y
    BMJ Open; 2019 Jun; 9(6):e025773. PubMed ID: 31209084
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Model Selection Approach for Time Series Forecasting: Incorporating Google Trends Data in Australian Macro Indicators.
    Karim AA; Pardede E; Mann S
    Entropy (Basel); 2023 Jul; 25(8):. PubMed ID: 37628174
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Developing a dengue forecast model using machine learning: A case study in China.
    Guo P; Liu T; Zhang Q; Wang L; Xiao J; Zhang Q; Luo G; Li Z; He J; Zhang Y; Ma W
    PLoS Negl Trop Dis; 2017 Oct; 11(10):e0005973. PubMed ID: 29036169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate Forecasting of Emergency Department Arrivals With Internet Search Index and Machine Learning Models: Model Development and Performance Evaluation.
    Fan B; Peng J; Guo H; Gu H; Xu K; Wu T
    JMIR Med Inform; 2022 Jul; 10(7):e34504. PubMed ID: 35857360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of a hybrid model in predicting the incidence of tuberculosis in a Chinese population.
    Li Z; Wang Z; Song H; Liu Q; He B; Shi P; Ji Y; Xu D; Wang J
    Infect Drug Resist; 2019; 12():1011-1020. PubMed ID: 31118707
    [No Abstract]   [Full Text] [Related]  

  • 40. Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina.
    Choi SB; Ahn I
    PLoS One; 2020; 15(7):e0233855. PubMed ID: 32673312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.