BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32453720)

  • 1. Non-uniform distribution of myosin-mediated forces governs red blood cell membrane curvature through tension modulation.
    Alimohamadi H; Smith AS; Nowak RB; Fowler VM; Rangamani P
    PLoS Comput Biol; 2020 May; 16(5):e1007890. PubMed ID: 32453720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.
    Smith AS; Nowak RB; Zhou S; Giannetto M; Gokhin DS; Papoin J; Ghiran IC; Blanc L; Wan J; Fowler VM
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4377-E4385. PubMed ID: 29610350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MYH9-related disease mutations cause abnormal red blood cell morphology through increased myosin-actin binding at the membrane.
    Smith AS; Pal K; Nowak RB; Demenko A; Zaninetti C; Da Costa L; Favier R; Pecci A; Fowler VM
    Am J Hematol; 2019 Jun; 94(6):667-677. PubMed ID: 30916803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Forces of Myosin Motors May Control Endovesiculation of Red Blood Cells.
    PeniÄŤ S; FošnariÄŤ M; Mesarec L; IgliÄŤ A; Kralj-IgliÄŤ V
    Acta Chim Slov; 2020 Jun; 67(2):674-681. PubMed ID: 33855566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
    Svetina S; Kuzman D; Waugh RE; Ziherl P; Zeks B
    Bioelectrochemistry; 2004 May; 62(2):107-13. PubMed ID: 15039011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biconcave shape of human red-blood-cell ghosts relies on density differences between the rim and dimple of the ghost's plasma membrane.
    Hoffman JF
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14847-14851. PubMed ID: 27930321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stress-free state of the red blood cell membrane and the deformation of its skeleton.
    Svelc T; Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):217-27. PubMed ID: 22302416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An actomyosin contractile mechanism for erythrocyte shape transformations.
    Fowler VM
    J Cell Biochem; 1986; 31(1):1-9. PubMed ID: 3722275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that asymmetry of the membrane/cytoskeletal complex in human red blood cell ghosts is responsible for their biconcave shape.
    Hoffman JF
    Proc Natl Acad Sci U S A; 2018 Feb; 115(7):1641-1645. PubMed ID: 29382753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of a Gap restoration in the membrane skeleton of the red blood cell: possible role for myosin II in local repair.
    Cibert C; Prulière G; Lacombe C; Deprette C; Cassoly R
    Biophys J; 1999 Mar; 76(3):1153-65. PubMed ID: 10049301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.
    Svetina S; Kokot G; Kebe TŠ; Žekš B; Waugh RE
    Biomech Model Mechanobiol; 2016 Jun; 15(3):745-58. PubMed ID: 26376642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface model of the human red blood cell simulating changes in membrane curvature under strain.
    Kuchel PW; Cox CD; Daners D; Shishmarev D; Galvosas P
    Sci Rep; 2021 Jul; 11(1):13712. PubMed ID: 34211012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Red blood cell shape and deformability in the context of the functional evolution of its membrane structure.
    Svetina S
    Cell Mol Biol Lett; 2012 Jun; 17(2):171-81. PubMed ID: 22271334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale dynamics of actin filaments in the red blood cell membrane skeleton.
    Nowak RB; Alimohamadi H; Pestonjamasp K; Rangamani P; Fowler VM
    Mol Biol Cell; 2022 Mar; 33(3):ar28. PubMed ID: 35020457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal imaging reveals membrane skeleton reorganisation during reticulocyte maturation and differences in dimple and rim regions of mature erythrocytes.
    Blanch AJ; Nunez-Iglesias J; Namvar A; Menant S; Looker O; Rajagopal V; Tham WH; Tilley L; Dixon MWA
    J Struct Biol X; 2022; 6():100056. PubMed ID: 34977554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elastic properties of the red blood cell membrane that determine echinocyte deformability.
    Kuzman D; Svetina S; Waugh RE; Zeks B
    Eur Biophys J; 2004 Feb; 33(1):1-15. PubMed ID: 13680208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear stress and force required for tether formation of neonatal and adult erythrocytes.
    Ruef P; Gehm J; Gehm L; Pöschl J
    Clin Hemorheol Microcirc; 2011; 48(1):119-28. PubMed ID: 21876240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of red blood cell mechanics during morphological changes.
    Park Y; Best CA; Badizadegan K; Dasari RR; Feld MS; Kuriabova T; Henle ML; Levine AJ; Popescu G
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6731-6. PubMed ID: 20351261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.