These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 32453775)

  • 1. A symbiotic bacterium of shipworms produces a compound with broad spectrum anti-apicomplexan activity.
    O'Connor RM; Nepveux V FJ; Abenoja J; Bowden G; Reis P; Beaushaw J; Bone Relat RM; Driskell I; Gimenez F; Riggs MW; Schaefer DA; Schmidt EW; Lin Z; Distel DL; Clardy J; Ramadhar TR; Allred DR; Fritz HM; Rathod P; Chery L; White J
    PLoS Pathog; 2020 May; 16(5):e1008600. PubMed ID: 32453775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved coccidian gene is involved in Toxoplasma sensitivity to the anti-apicomplexan compound, tartrolon E.
    Bowden GD; Reis PM; Rogers MB; Bone Relat RM; Brayton KA; Wilson SK; Di Genova BM; Knoll LJ; Nepveux V FJ; Tai AK; Ramadhar TR; Clardy J; O'Connor RM
    Int J Parasitol Drugs Drug Resist; 2020 Dec; 14():1-7. PubMed ID: 32738587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills.
    Elshahawi SI; Trindade-Silva AE; Hanora A; Han AW; Flores MS; Vizzoni V; Schrago CG; Soares CA; Concepcion GP; Distel DL; Schmidt EW; Haygood MG
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):E295-304. PubMed ID: 23288898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Marine Compound Tartrolon E Targets the Asexual and Early Sexual Stages of
    Cotto-Rosario A; Miller EYD; Fumuso FG; Clement JA; Todd MJ; O'Connor RM
    Microorganisms; 2022 Nov; 10(11):. PubMed ID: 36422330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A small-molecule cell-based screen led to the identification of biphenylimidazoazines with highly potent and broad-spectrum anti-apicomplexan activity.
    Moine E; Denevault-Sabourin C; Debierre-Grockiego F; Silpa L; Gorgette O; Barale JC; Jacquiet P; Brossier F; Gueiffier A; Dimier-Poisson I; Enguehard-Gueiffier C
    Eur J Med Chem; 2015 Jan; 89():386-400. PubMed ID: 25462254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The gill-associated microbiome is the main source of wood plant polysaccharide hydrolases and secondary metabolite gene clusters in the mangrove shipworm Neoteredo reynei.
    Brito TL; Campos AB; Bastiaan von Meijenfeldt FA; Daniel JP; Ribeiro GB; Silva GGZ; Wilke DV; de Moraes DT; Dutilh BE; Meirelles PM; Trindade-Silva AE
    PLoS One; 2018; 13(11):e0200437. PubMed ID: 30427852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro culture systems for the study of apicomplexan parasites in farm animals.
    Müller J; Hemphill A
    Int J Parasitol; 2013 Feb; 43(2):115-24. PubMed ID: 23000674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turnerbactin, a novel triscatecholate siderophore from the shipworm endosymbiont Teredinibacter turnerae T7901.
    Han AW; Sandy M; Fishman B; Trindade-Silva AE; Soares CA; Distel DL; Butler A; Haygood MG
    PLoS One; 2013; 8(10):e76151. PubMed ID: 24146831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Conserved Biosynthetic Gene Cluster Is Regulated by Quorum Sensing in a Shipworm Symbiont.
    Robes JMD; Altamia MA; Murdock EG; Concepcion GP; Haygood MG; Puri AW
    Appl Environ Microbiol; 2022 Jun; 88(11):e0027022. PubMed ID: 35611654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxoplasma gondii: the model apicomplexan.
    Kim K; Weiss LM
    Int J Parasitol; 2004 Mar; 34(3):423-32. PubMed ID: 15003501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The complete genome of Teredinibacter turnerae T7901: an intracellular endosymbiont of marine wood-boring bivalves (shipworms).
    Yang JC; Madupu R; Durkin AS; Ekborg NA; Pedamallu CS; Hostetler JB; Radune D; Toms BS; Henrissat B; Coutinho PM; Schwarz S; Field L; Trindade-Silva AE; Soares CA; Elshahawi S; Hanora A; Schmidt EW; Haygood MG; Posfai J; Benner J; Madinger C; Nove J; Anton B; Chaudhary K; Foster J; Holman A; Kumar S; Lessard PA; Luyten YA; Slatko B; Wood N; Wu B; Teplitski M; Mougous JD; Ward N; Eisen JA; Badger JH; Distel DL
    PLoS One; 2009 Jul; 4(7):e6085. PubMed ID: 19568419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The plant-type ferredoxin-NADP+ reductase/ferredoxin redox system as a possible drug target against apicomplexan human parasites.
    Seeber F; Aliverti A; Zanetti G
    Curr Pharm Des; 2005; 11(24):3159-72. PubMed ID: 16178751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Symbiotic Spectrum: Where Do the Gregarines Fit?
    Rueckert S; Betts EL; Tsaousis AD
    Trends Parasitol; 2019 Sep; 35(9):687-694. PubMed ID: 31345767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plastid-like organelle of apicomplexan parasites as drug target.
    Wiesner J; Reichenberg A; Heinrich S; Schlitzer M; Jomaa H
    Curr Pharm Des; 2008; 14(9):855-71. PubMed ID: 18473835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribonucleotide reductase as a target to control apicomplexan diseases.
    Munro JB; Silva JC
    Curr Issues Mol Biol; 2012; 14(1):9-26. PubMed ID: 21791713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic differentiation among isolates of Teredinibacter turnerae, a widely occurring intracellular endosymbiont of shipworms.
    Altamia MA; Wood N; Fung JM; Dedrick S; Linton EW; Concepcion GP; Haygood MG; Distel DL
    Mol Ecol; 2014 Mar; 23(6):1418-1432. PubMed ID: 24765662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of 4-Amino 2-Anilinoquinazolines against
    Gilson PR; Nguyen W; Poole WA; Teixeira JE; Thompson JK; Guo K; Stewart RJ; Ashton TD; White KL; Sanz LM; Gamo FJ; Charman SA; Wittlin S; Duffy J; Tonkin CJ; Tham WH; Crabb BS; Cooke BM; Huston CD; Cowman AF; Sleebs BE
    Antimicrob Agents Chemother; 2019 Mar; 63(3):. PubMed ID: 30559138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytoskeleton of apicomplexan parasites.
    Morrissette NS; Sibley LD
    Microbiol Mol Biol Rev; 2002 Mar; 66(1):21-38; table of contents. PubMed ID: 11875126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The apicoplast as a potential therapeutic target in Toxoplasma and other apicomplexan parasites: some additional thoughts.
    Roos DS
    Parasitol Today; 1999 Jan; 15(1):41. PubMed ID: 10234180
    [No Abstract]   [Full Text] [Related]  

  • 20. Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites.
    Hunter WN
    Curr Top Med Chem; 2011; 11(16):2048-59. PubMed ID: 21619509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.